
From UML Activity Diagrams To Stochastic Petri Nets:
Application To Software Performance Engineering*

Juan Pablo L6pez-Grao, Jose Merseguer, Javier Campos
Departamento de Inform~ttica e Ingenier[a de Sistemas

Universidad de Zaragoza
Zaragoza, Spain

E-mail: {jpablo,jmerse,jcampos} @ unizar.es

A B S T R A C T
Over the last decade, the relevance of performance evalua-
tion in the early stages of the software development life-cycle
has been steadily rising. We honestly believe that the inte-
gration of formal models in the software engineering process
is a must, in order to enable the application of well-known,
powerful analysis techniques to software models. In pre-
vious papers the authors have stated a proposal for SPE,
dealing with several UML diagram types. The proposal for-
malizes their semantics, and provides a method to translate
them into (analyzable) GSPN models. This paper focuses
on activity diagrams, which had not been dealt with so far.
They will be incorporated in our SPE method, enhancing its
expressivity by refining abstraction levels in the statechart
diagrams. Performance requirements will be annotated ac-
cording to the UML profile for schedulability, performance
and time. Last but not least, our CASE tool prototype will
be introduced. This tool deals with every model element
from activity diagrams and ensures an automatic transla-
tion from ADs into GSPNs strictly following the process
related in this paper.

Keywords : UML, software performance, Generalized
Stochastic Petri nets, eompositionality, activity diagrams,
CASE tool, UML Profile for schedulability performance and
time specification

1. I N T R O D U C T I O N
The Unified Modeling Language (UML) [26] is a semi

formal language developed by the Object Management
Group [28] to specify, visualize and document models of soft-
ware systems and non-software systems too. UML defines
three categories of diagrams: static diagrams, behavioural
diagrams and diagrams to organize and manage application

*This work has been developed within the project
P084/2001 of the Gobierno de Aragdn, and the projects
TIC2002-04334-C03-02, TIC2003-05226, and TIC2001-1819
of the Spanish Ministry of Science and Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP '04 January 14-1572004, Redwood City, California.
Copyright 2004 ACM 1-58113-673-0/04/0001 ...$5.00.

modules. Being the objective of our works the performance
evaluation [24] of software systems at the first stages of the
software development process, as proposed by the software
performance engineering (SPE) [30], behavioural diagrams
play a prominent role, since they are intended to describe
system dynamics. These diagrams belong to five kinds: Use
Case diagram (UC), Sequence diagram (SD), Activity dia-
gram (AD), Collaboration diagram and Statechart diagram
(SC).

In this paper we explore a possible role for the AD in the
SPE process: the description, at a lower level, of specific ac-
tivities from an SC diagram. Employing the SC (which mod-
els the life cycle of the objects in the system) together with
the AD allows us to model all the paths in the (potential)
system dynamics. Actually, this work fits in a more general
SPE approach developed by the authors, that deals with
other UML behavioural diagrams: The UC diagram was
proposed in [22] to model the usage of the system for each
actor; in [21], the SC was addressed (by means of the UML
state machines package) to obtain a performance model of
a system described as a set of SCs; while in [6], the SD
was studied together with the SCs to obtain a performance
model representing a concrete execution of the system.

In this environment, we base our interpretation of the AD
on the fact that they are suitable for internal flow process
modeling, as expressed in [26]. Therefore they arerelevant
to describe activities performed by the system, usually ex-
pressed in the SC as doAct iv i t ies in the states. Other inter-
pretations for the AD propose it as a high level modeling
tool, that of the workflow systems [11], but at the moment
we do not consider this role in our SPE approach.

In the following we give the big picture of our SPE ap-
proach before the inclusion of the AD. First the system
is modeled by means of the proposed UML diagrams, and
performance requirements are gathered according the UML
profile for performance [25]. Since UML defines "infor-
mally" their semantics, we propose a method to trans-
late each diagram into a Labeled Generalized Stochas-
tic Petri net (LGSPN), an extension of the well-known
GSPN formalism [1], then gaining a formal semantics for
them. Afterwards, we give a procedure to compose these
LGSPNs, therefore gaining an analyzable model (a perfor-
mance model) for the system or for a particular scenario
(depending on which diagrams have been modeled, as ex-
pressed above). Obviously, the translation method implies
taking decisions on the interpretation of the diagrams. Fi-
nally, the performance models obtained can be analyzed or

25

~ pl 'labell ~ p3,1abell ~ p5 ~l..~...~.~. ~ P ~
tl I label2 t21 label2 t3 I label2 t121 label2
p2 p4 p6 p6

LSI LS2 LS1 [I LS2
{label l,label2 }

F i g u r e 1: S u p e r p o s i t i o n o f places and t r a n s i t i o n s

simulated using the G S P N tools [13] to obta in performance
indices. Note tha t the L G S P N formalism was chosen for our
me thod due to the number of analysis and s imulat ion tools
available for it.

Despi te being aware tha t resource model ing is a funda-
menta l issue in S P E terms, at the moment we take an "in-
finite resource" assumption. Taking into account tha t our
approach is not meant for real- t ime domain but to estab-
lish pr imary results in early stages of dis t r ibuted systems
modeling, it could be a reasonable assumption. Since the
approach is based on a composi t ional model l ing of compo-
nents (LGSPNs) , the considerat ion of the use of resources
could be included by model l ing them (mainly in the de-
p loyment diagram) as addi t ional components and by using
similar connect ion rules between these components and the
rest of the system.

In this work, and in order to in tegrate the AD in our ap-
proach according to the previously referred in terpre ta t ion
(i.e. act ivi t ies description), we give a formal semantics to
the AD. It is accomplished by t rans la t ing into an L G S P N
each one of the concepts defined in the UML act iv i ty graphs
package and by composing the result ing LGSPNs, using the
operators defined in Appendix A, into a new one tha t rep-
resents the whole AD. Figure 1 depicts an informal repre-
senta t ion of the composi t ion (superposit ion) opera tor over
places and transit ions. Finally, it is shown how to compose
the L G S P N represent ing an AD with the L G S P N represent-
ing the SCs tha t use the d o A c t i v i t y modeled by the AD.
The result of the composi t ion is a new L G S P N tha t repre-
sents a performance model for the system, according to our
proposal [20].

Therefore in the final per formance model, we obta in a rea-
sonable degree of expressivi ty to deal wi th the descript ion
and evaluat ion of the dynamics of large and complex sys-
tems, such as d is t r ibuted systems where we may want to take
into account inter-node communica t ion and the occurrence
of external events (using SCs, SDs) as well as the internal,
concurrent processing wi th in the nodes (using ADs).

Regard ing the expressivi ty enhancement , several reasons
back the assert ion above. First , it is well-known tha t ADs
are more appropr ia te for model l ing parallelism. Certainly,
one can use nested s tates in SCs, but this is undesirable
(even deprecated) and, fur thermore, inhibits us from mod-
elling unsafe system behaviour . Additionally, we are unable
to model shared methods wi thout ADs: We have not deal t
so far wi th s tat ic d iagrams (as the class diagram), and thus
we cannot define (yet) shared methods by means of class in-
heritance. However, we can define a me thod dynamics using
an AD, invoking this model from different SCs.

Fur thermore , in this paper we briefly overview our proto-
type tool, which implements our me thod for ADs: a C A S E
tool front end is used to design performance anno ta ted mod-
els whereas the tool itself constructs their t rans la t ion into

GSPNs. These nets are finally analyzed wi th a proper per-
formance evaluat ion tool (namely, Grea tSPN [13]).

The rest of the article is organized as follows: Section 2
enumerates the main rules of the t rans la t ion method.
Section 3 analyzes the t rans la t ion of each element in the
AD into a stochastic Petr i net model. Section 4 discusses
how the stochast ic Pet r i net model for the whole AD is
obtained. Note tha t a fairly concise example has been
included at the end of the section in order to i l lustrate
this process. Section 5 briefly presents our tool prototype.
Section 6 explores the bibliography. Finally, section 7
summarizes the paper and discusses future extensions.

D e f i n i t i o n s
We adopt the no ta t ion defined in [1] for GSPNs, but sim-

plified to consider only ordinary systems (Petr i nets in which
arcs have weight at most one). A G S P N system is a 8-ple
S = (P, T, I1, I , O, H, W, M °) , where P is the set of places,
T is the set of immedia te and t imed transi t ions, P A T = 0;
lII : T ~ ~xl is the pr ior i ty funct ion tha t maps transi-
t ions onto na tura l numbers represent ing their pr ior i ty level,
by default , t imed t ransi t ions have pr ior i ty equal to zero;
I , O, H : T ~ 2 P are the input , output , inhibi t ion func-
tions, respectively, tha t map t ransi t ions onto the power set
of P ; W : T ~ lR is the weight funct ion tha t assigns
real (positive) numbers to rates of t imed t ransi t ions and to
weights of immedia te transit ions. Finally, M ° : P ~ ~Xl is
the initial mark ing function.

A labeled ordinary G S P N (LGSPN) is then a t r iplet £ S =
(S , ¢ , A), where S is a G S P N ordinary system, as defined
above, A : T ~ L T [_J T is the labeling funct ion tha t assigns
to a t rans i t ion a label belonging to the set L T 0 ~- and ¢ :
P ~ L p U T is the labeling function tha t assigns to a place
a label belonging to the set L P U T. T-labeled net objects
are considered to be internal.

Note that , wi th respect to the definition of L G S P N system
given in [9], here bo th places and t ransi t ions can be labeled,
moreover, the same label can be assigned to place(s) and
to t ransi t ion(s) since it is not required tha t L T and L P are
disjoint.

2. ACTIVITY DIAGRAMS FOR PERFOR-
MANCE EVALUATION

Act iv i ty d iagrams represent U M L act iv i ty graphs and are
jus t a var iant of U M L state machines (see [26], section 3.84).
In fact, a UML act iv i ty graph is a special izat ion of a U M L
state machine (SM), as it is expressed in the U M L meta-
model (see figure 2). The main goal of ADs is to stress the
internal control flow of a process in contrast to SC diagrams,
which are often driven by external events.

As our object ive is to use ADs to refine d o A c t i v i t i e s in
SCs and then to obta in predict ive performance measures
from the performance model obta ined from these diagrams,
we need addi t ional model ing information, such as rout ing
rates or the dura t ion of the basic actions. We propose to
annota te the AD to gather this informat ion according to
the UML profile [25]: subsect ion 2.1 describes this proposal.

It must be noted tha t in this paper we only focus in those
elements proper of ADs. See that , according to UML spec-
ification ([26], section 3.84), a lmost every s ta te in an AD
should be an action or subact iv i ty state, so a lmost every

26

ModelElement
(from Core)

Gu~d
expression : BooleanExpression /

+submachine

StateMachine
(from State Machines)

StateVeltex
(from State Machines)

I - -

tkind:%:::~:::a----~--~Kind [

0..l

State
(from State Machines)

Transition l
(from State Machines)

+internalTransition 0[. 1

) 0..1 +effect

~ l ~ [~ O o m Com~2::ehavior)

I [
.......... C°rnp°s'teStat--------~ t f

isConcurrent : Boolean

* ~ :u°bmI:zaa:~;:cShtia"te~) 1

7--
[isDynamic : S::o~:t~Sit~'S
dynamicArguments : ArgLislsExpression

l dynamicMultiplicity : Multiplicity

I
I ActionS t at_____~___.e
isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultipli¢ity : Multiplicity

J

~ _ _ ~ C,a..i.¢. I

I !Obiec;F]o-,vS I ~ , } +type
['Yn°"~B°°l~ I I I

; ; 2 o.
Parameter(from Core) [ClassifierInState

F i g u r e 2: U M L A c t i v i t y G r a p h s m e t a m o d e l

t ransi t ion 1 should be tr iggered by the ending of the execu-
t ion of the ent ry act ion or ac t iv i ty associated to the state.
Since UML is not strict at this point, then the elements
from the SMs package could occasionally be used with the
in terpre ta t ion given in [21].

As far as this issue is concerned, our decision is not to
allow other states than action, subact iv i ty or call states, and
thus to process external events jus t by means of call s tates
and control icons involving signals, i.e. signal sendings and
signal receipts. As a result of this, events are always deferred
(as any event is always deferred in an action state), so an
activity will not ever be interrupted when it is described by
an AD.

2.1 Performance annotations
Concerning performance requirements, as we have ex-

pressed above, we consider to gather in the AD routing rates
as well as the action durations. Then, from the annotations
proposed in the UML profile [25], we consider the stereo-
type <<PAstep>> together wi th its tag definitions PAprob
and PArespTime, tha t will allow to annota te respectively
rout ing rates and action durations.

Therefore, the format will be: PAprob = P(k) for rout-
ing rates (if no probabi l i ty P(k) is provided we will as-

1Notice tha t the word ' t rans i t ion ' has different meanings in

UML and PNs domain. We preserve bo th meanings in this

paper as the context should be enough to discr iminate the

' t rans i t ion ' we are referring to (UML or P N ' t ransi t ion ')

sume an equiprobable sample space, i.e., identical prob-
abili ty for each 'b ro ther ' t ransi t ion to be tr iggered); and
PArespTima = (<source-modifier>,'max',(n,'s.')), or PAresp-
Time = (<source-modifier>,'dist',(n-m,'s.')). Where <sou rce -
modifier>::= 'req'l'assm'rpred'l'msr'; 'dist' is assumed to be
an exponent ia l negat ive dis t r ibut ion and n-m expresses a
range of time.

Such annota t ions will be a t tached to t ransi t ions in order
to allow the assignment of different action durat ions depend-
ing on the decision. It implies tha t the class Transi t ion
should be included as a base class for the s tereotype
<<PAstep>> in [25].

Time annota t ions will be al located wherever an action is
executed (outgoing transi t ions of act ion states, or outgoing
transi t ions of decision pseudostates wi th an act ion s ta te as
input) and probabi l i ty annota t ions wherever a decision is
taken, i.e. in the t ransi t ion next to guard conditions. It must
be noticed tha t there is a special case where the performance
annota t ion is a t tached to the s ta te instead of the outgoing
transit ion: when the control flow is not shown because it
is implicit in the act ion-object flow. We do so because we
do not want to have performance annota t ions applied to it,
as it usually has a different semantics (it is never used for
model l ing the control flow, except in this par t icular case).

2.2 Proposed translation rules and formal def-
initions

A brief description of each AD element and their t rans-
lation to LGSPNs is presented in section 3. Section 4 il-
lustrates the me thod to compose those LGSPNs to obta in

27

the whole model for a specific AD, as well as the me thod
to compose the previous L G S P N s with the LGSPNs of the
SCs obtained according to [21], then obtaining a model tha t
comprehends all the possible dynamics for the whole system.
The overall me thod is i l lustrated in Figure 3

As a rule, the t ransla t ion of each one of AD elements can
be summar ized as a three-phased process:

s t e p I Transla t ion of each outgoing and self-loop transi-
tion. Applicable to action, subact iv i ty and call states,
and to fork pseudostates . Depending on the kind of
t ransi t ion, a different rule must be applied. Figures 4
and 6 depict the subnets tha t each kind of t ransi t ion
is t rans la ted into.

s t e p 2 Composi t ion of the LGSPNs corresponding to the
whole set of each kind of t ransi t ions considered in
step 1. Applicable to action, subact iv i ty and call
states, and to fork pseudostates. This composi t ion is
formally defined in section 3.

s t e p 3 Working out the L G S P N for the element by super-
posi t ion of the L G S P N s obta ined in the last step (if
any) and, occasionally, an addi t ional L G S P N corre-
sponding to the ent ry to its associated s ta te (the so-
called 'basic ' subnets for subact iv i ty states and fork
pseudostates , see figures 4 and 6).

F o r m a l d e f i n i t i o n o f t h e L G S P N s u b s y s t e m s

The formal definit ion of one of the L G S P N systems shown
in Figure 4 is s ta ted below. The rest of the cases in Figures 4
and 6 can be s t ra ightforwardly derived from this example,
so they will not be explici t ly i l lustrated.

Prom now onward, we will adopt the Objec t Const ra in t
Language [26] (OCL) syntax to indicate the image of an
element (or of a set of elements) belonging to the domain
of a cer ta in relation. Let us consider the relat ion between
the classes Transition and Act ion and the role effect be-
tween them, then the image of an instance of class Act ion ,
th rough the relat ion effect is denoted as Action. effect. Also
the a t t r ibu tes of a class A, say at1, and at2 are denoted
using the dot notat ion, A.a t l , and A.at2.

Also, we must note that , in the following, we suppose tha t
every object derived from ModeIElement metaclass has an
unique name wi th in its nmnespace, a l though it could be not
explicit ly shown in the model.

A system for an outgoing t imed t ransi t ion ott of an ac-
t ion s ta te A S (see figure 4, case 1.a) is an L G S P N £ 8 ~ =

ott ott X ~) T,~ ~ (SAs, ~AS, character ized by the set of t ransi t ions
= {t~,t2}, and the set of places P ~ t = {p~,p2,p3}. The
input and ou tpu t functions are respect ively equal to:

((

i ~ t (t) = {Pl} i f t = t l O ~ t (t) = {P2} i f t = t l
{P2} i f t = t 2 {P3} i f t = t 3

There are no inhibi tor arcs, so H ~ t (t) = 0. The priori ty
and the weight functions are respect ively equal to:

(
U ~ (t) = 0 i f t = t 2

1 if t = tl

w ~ ' (t) =

8
rott if n % (t) = 0

Pcond if ~ (t) = cond_ev >
• 1 o therwise

where, in this case, rott is the ra te pa ramete r of the t imed
t ransi t ion t2 and Pcong is the weight of the immedia te t ran-
sition t l .

The weight Pcond assigns the value of the probabi l i ty an-
notat ion, tha t is a t tached to the AD t rans i t ion ott with the
format PAprob = Pcond. If there is not such annota t ion, Pcond
is equal to 1/nt , where nt is the number of e lements in the
set AS.outgoing.

The rate rott is equal to 1/n, when the t ime annota-
t ion a t tached to the AD t rans i t ion is expressed in the for-
mat PArespTime = (<source-modifier>,max,(n,'s.')), when
i t is expressed in the format PArespTime = (<source-
modifier>,'dist',(n-m,'s.')), then rott is equal to. 2/(n + m).

The initial marking funct ion is defined as Vp E
p ~ t : M ~ t ° (p) = 0. Finally, the labeling functions are
equal to:

8
i n i _ A S if p = pl

¢ ~ t (p) = execute if p = P2
>
• in i_nex tx i f p = ps
(

A~t(t) = cond_ev if t = t l

out_lambda if t = t2

where, for abuse of notat ion, A S = A S . n a m e and n e x t x =
of t . target .name.

As they are profusely used in next section, we also define
AG as the ac t iv i ty diagram, L s t v e r t e x P the set of labels
of s ta te vert ices in it, L s t v e r t e x P = {ini_target, Vtarget E
AG. t rans i t i ons - -~ t a rge t . name} and Lev p as the set of
events in the system, Lev P ---- {e_evx, Vevx E E v } U
{ack_evx, Vevx E E v } .

3. T R A N S L A T I N G A C T I V I T Y D I A G R A M

E L E M E N T S
The following subsections are devoted to t rans la te each

d iagram element into an LGSPN; the composi t ion of these
nets (section 4) results in a s tochast ic Pet r i net system tha t
will be used to obta in performance parameters for the mod-
elled element.

3.1 Action states
An action s ta te is ' a shor thand for a s ta te wi th an en-

t ry act ion and at least one outgoing t rans i t ion involving the
implicit event of complet ing the ent ry act ion ' ([26], section
3.85). According to this definition and the t rans la t ion of
simple states in SMs [23] we should interpret the act ion
a tomic and therefore represent it by an immedia te transi-
t ion wi th in the L G S P N corresponding to the state.

However, for the sake of an easier per formance modell ing,
we will allow here t imed actions (i.e., actions wi th a signif-
icant durat ion) . To do so, we will dist inguish t imed from
non- t imed outgoing transi t ions. As explained in section 2,
annota t ions are a t tached to t ransi t ions in order to allow the
ass ignment of different act ion durat ions depending on the

28

Translating an Activity Diagram into an L ~ T
~ i o n in which th lation p for th :~tia~e which] [Take an el]. _ ~ _ e n t s left in the AD]

is expressed in formal terms. (from the AD J ~ - - - ~

[action/subactivity/call state i [join/merge pseudostate, final state [
°r ~ u ~ v ~ ~ t symb°l] /

I[T~Tab~rolmn tilt 2g~ ~gel:~l~s~ iOnn~) [T ~fr; t~ ~2ef~ Pe I etl ~l;s~:i° n :] < ~ 1 /

l{Sect on ., l{soctioo.,I " Y \ /
I[(acTcr~rrd::l~t~g~r:~i:rn6)-~ [aBc~rdd:bn:st~'fi'~r~et6] [(acTS:rn~li:t;tt°h~g~r:~i:rn6) 3 I I ~ /

..... ~ ~ / ~ f l ~ . ~ _ ~[more.. ~ [elements
~rU:g~s: ~ogn s 1 eft] ~ n o itions left] / [. itions left]~ "~self-l° °~ ~]nsiti°ns) I left]

. I {Section 3} ~ ~ {Section 3} / l

[Comp iquesubnet 1 [/ Comp iquesubnet ~ / . ~{Sect ion 4}
[for all the outgoing itions~] [for all ~he self-~o~p itions] / f Compose the LGSPN

-- ~ ~ / l for the whole AD

F i g u r e 3: T h e w h o l e t r a n s l a t i o n m e t h o d fo r a n A D

te rmina t ion condit ion (note that , in ADs, outgoing transi-
tions from action states model decision branching). A t imed
t ransi t ion in an AD will entail the inclusion of a t imed tran-
sition (with a rate associated in fnnction of the performance
annota t ion) in the result ing LGSPN. A non- t imed t ransi t ion
will result in an immedia te t ransi t ion in the L G S P N model.

Transla t ing an action s ta te into L G S P N formalism takes
the three steps expressed in section 2.2. Given an action
s ta te A S let q be the number of outgoing t imed t ransi t ions
OTi of the s ta te (which do not end in a join pseudostate) , q'
the number of outgoing non- t imed t ransi t ions ONj (which
do not end in a join pseudostate) , r the number of outgoing
t imed transi t ions OTJm tha t end in a join pseudostate , r ~
the number of outgoing non- t imed transi t ions ONJ~ tha t
end in a join pseudostate , s the number of self-loop t imed
transi t ions STk and s ' the number of self-loop non- t imed
transi t ions SNi.

Then for each outgoing or self-loop t ransi t ion t, we have
an L G S P N £ $ ~ s : S t A t (a s t e R , AS) as shown in figure 4,
cases 1.a-l.f. This results in a set of q + q' + r + r ' + s + s '
L G S P N models tha t need to be combined to get a model of
the s ta te AS, £SAS = (Sas, g, as, Aas).

Firs t ly we must compose the submodels of the t ransi t ions
of the same type, using the superposi t ion operators defined
in Appendix A and the following equations:

i = l , . . . , q

c s ~ = I I c s ~ ~
L s t v e r t e x P

k=l,...,s
c s ~ ; II c s ~ ~

i n i_AS

m=l,...,T
£ 8 ors = As I I c s % J~

in i_AS

j = l , . . . , q I
£ 8 oN as = I I c s ~ " j

L s t v e r t e x P

l = ~ . . . , s t

i n i - A S , o u t - A

n = l , . . . , r I
£ S oN: ON:

i n i_AS

Again composing the subsystems jus t shown, the L G S P N

model £SAs is now defined by:

i n i - A S in i_AS L s t v e r t e x P

II c s ~ J) I I c s ~ N:
i n i - A S in i_AS

Final ly we must remember tha t UML lets any kind of
act ion to be executed inside an action state. T h a t means
we might find a Cal lAct ion or a SendAct ion there. However,
UML syntax provides two special elements for this type of
states: call s tates and signal sending icons. We suggest their
use, but if an act ion s ta te is used instead, then we should
apply the t rans la t ion me thod described for the equivalent
element (call s ta te or signal sending control icon).

3,2 Subactivity states
A subact iv i ty s ta te always invokes a nested AD. Its out-

going t ransi t ions do not have t ime annota t ions at tached, as
the dura t ion act iv i ty can be determined t rans la t ing the AD
and composing the whole system (that will be seen later in
this paper).

Transla t ing a subact iv i ty s ta te into the L G S P N formalism
takes those three steps pointed out in section 2.2. Notice
tha t there is an addi t ional L G S P N tha t corresponds with
the ent ry to the state, called basic.

Then, given a subact iv i ty s ta te S S let q be the number of
outgoing t ransi t ions Oi of the s ta te (which do not end in a
join pseudostate) , r the number of outgoing t ransi t ions OJk
tha t end in a join pseudostate , and s the number of self-loop
t ransi t ions Sj . Also let AG' be the nested ac t iv i ty d iagram
and top the name of the first e lement of AG ~, top = AG'.top.

According to the t ransla t ions shown in figure 4, cases
2.a-2.d, we have a basic L S G P N £$sBs = ~tSBss,wss,°{'B A~S)
and one L G S P N for each outgoing or self-loop t ransi t ion
t, £Stss = S t (ss, g'~s, ASs). Therefore, we have q + r + s + 1
L G S P N models tha t need to be combined to get a model of

29

©

~9

I plliniAS

tllcond_ev

p21execute

t21out_k

pJlini nextx

(l,a) outgoing
gimeU transition

• pllini AS t2lcond_ev

pJl±n± nextx

(l.b) Outqoing
not-tiEd tEans.

• t21condev
plliniAS

(l.c) Self-loop
not-tiEd trans.

pllini_AS

tllcond_ev

p21execute

t2Iout_k

(l . d) Self-loop
tied transitior

pllini_AS

tllcond_ev

p2[execute

t21out_l

pJlwa/tlng

tJldo_ne×c×

(I.~) outgoing
timed transition

(to join)

. ~ tllinvoke_AG

p2lini top

r ~
12.a) ~asi=

• pllend AG' ~pllend_AG'

tllcond ev tlIcon d ev

p21in± nextx p21ini_S S

(2.5) Outgoing ~ (2,c) Self-loop
t=anmition 1 transiti°n

p l l i n ± CS

p l l i n i CS c 2 1 c o n d e v
p 2 1 e e v x tllcond ev ~p2~ll~ini_nextx

p2~e-evx (3.b) Outgoing
PJ[waitinq transition

p2'lack ev× Asynchronous call
t21out k ~pllini CS

ini_nextx
t2icondev

pJle_evx
(3.a) Outgoing (3,d) Self-loop
transition transition

Synchronous call Asynchronous call

pllini_CS

tllcond ev
~ i p21e-ev×

pJlwait±ng
p2'[ackevx
ut_k

(3.c) Self-loop
tr~sition

Synchronous call

pllini_AS

t2lcondev

pJlwaiting

tJldo_nexcx

(l.f) Outgoin

tllcondev

p2lwaiting

t21do_nextx

(2.d) Outgoing
transition

plliniCS

tlicond ev • p21e_evx pJlwaiting
p2'lack_evx

t21out_k

waiting2join

~31do_nextx

(3.e) Outgoing
tr~sition
(to join)

Synchronous call

pllini_CS

t 2 l c o n d _ e v

ni--neltx

o_nex x

(3,f) Outgoing
transition
(to join)

Agynchronous Call

F i g u r e 4: A c t i o n , S u b a c t i v i t y a n d C a l l S t a t e s t o L G S P N

the s tate SS , £ S s s = (Ss s , g , ss , Ass). The L G S P N s corre-
sponding to each set of kind of trans i t ions are now obta ined
by superposi t ion:

c s ~ = II cs~°~ c s ~ ~ = I I c s ~ ~
L s t v e r ~ e ~ z P , e n d _ A G e n d - A G

j=~

~sA = c s ~
e n d - A G , o u t _ A , i n i - S S

A n d the final L G S P N mode l £,Sss for the subac t iv i ty
s ta te is now defined by:

L s s ~ = ((~ s ~ ~ I I ~ s A) I I z s ~) I I L s ~
e n d _ A G e n d - A G i n i _ S S

3 . 3 C a l l s t a t e s
Call s ta tes are a part icular case of ac t ion s tates in which

its assoc iated entry act ion is a Cal lAct ion , so trans lat ion
of these e lements is rather similar. It must be noted that
w h e n a Ca l lAct ion is executed a set of Cal lEvents m a y be
generated. For the sake of s implicity, we assume that at
most one event is generated, but def init ion can be ex tended
adding new places in the L G S P N to consider that poss ib i l i ty
as well.

Bes ides , the Ca l lAct ion may be synchronous or not de-
pend ing on the value of its a t tr ibute isAsynchronous, where
synchronous means that the act ion wil l not be comple ted
unti l the event eventua l ly generated by the act ion is con-
sumed by the receiver. In that case, we need a new place
and trans i t ion in the corresponding L G S P N to mode l the
synchronizat ion (see figure 4, cases 3.a, 3.c and 3.e).

qb trans la te a call s tate , s teps to fol low are s imilar to
those descr ibed in sect ion 2.2. Given a call s ta te CS,

• If verifies S .en t ry . I sAsynchronous = fa l se (i.e., its
assoc ia ted Ca l lAct ion is a synchronous call) we define
u as the number of ou tgo ing trans i t ions OSi of the
s tate (which do not end in a join pseudos ta te) , v the
number of outgo ing trans i t ions OJSk that end in a jo in
p se u d o s ta te and w the number of self - loop trans i t ions
SSm.

• • If verifies S .en t ry . I sAsynchronous = t rue (i.e., its as-
soc ia ted Ca l lAct ion is an asynchronous call) we define
u' as the number of outgo ing trans i t ions OAj of the
s tate (which do not end in a jo in pseudos ta te) , v t the
number of outgo ing trans i t ions OJAz tha t end in a jo in
pseudos ta te , and w' the number of self - loop trans i t ions
SAm.

Also let evx be an event generated by the call act ion,
evx = S . e n t r y . o p e r a t i o n ~ o c c u r r e n c e . Consider ing this,
we have one L G S P N for each outgo ing or self- loop transi-
t ion t, £,9~cs = S t (cs , COs, Arcs), as shown in figure 4, cases
3.a-3.f. Therefore, we have either u + v + w or u' + v' + w'
L G S P N mode l s that need to be combined to get a mode l of
the s ta te CS, £ 8 c s = (Scs, g'cs, Acs). Th e L G S P N s corre-
sponding to each set of kind of trans i t ions are now obta ined
by superposi t ion:

i=l,...,u j=l,...,u t
~os = OAj

~cs I I cs~°~ ~ ~s~°2 = I I LScs
L s t v e r t e x P , L e v P L s t v e r t e x P , L e v P

k=l,. . . ,v l = l , . . . , v t
£Sojs = oJAz cs I I cs~°f ~ ~ s ~ A= I I CSc~

i n i _ O S , L e v P i n i _ C S , L e v P

3 0

rn=l,...,w ~ : l ~ . . . Q v /
£ $ S S £8SS~n £ $ S A £ $ S A n

ini_CS,Lev P ini_CS,Lev P

The final LGSPN for the state £$cs is defined by one
of the two following equations, depending on whether the
action was synchronous (a) or asynchronous (b):

= £ s o s ~ oJs £Scs (C S g II cs , I I £ $ ~ (a)
ini_CS,Lev P ini_CS,Lev P

~- £ s O A ~ £$OJA

ini_OS,Lev P ini_CS,Lev P

3.4 Decisions
Decisions are preprocessed before the AD translation, as it

will be mentioned in section 4.1.1. They are substituted by
equivalent outgoing transitions on action states (as shown in
figure 5), preserving the properties inherent in performance
annotations. Therefore, they do not have to be translated.
Note that performance annotations in figure 5 do not strictly
follow the UML Profile [25], in order to obtain a more com-
pact notation (otherwise, the figure would be rather over-
loaded).

n ingoing transitions

{immediate]

[cond I d /

[condom]

{immediate}

IcondaL,] ~ [c o n d L '] [cond ~ ,]
• me a a e ~ . . . , . . ~ a l n o I ,m d, t t LM,}

{immediate }
m outgoing transitions

. ingolng transitions

2
¢ond 0~ ^ cond

l annet H}

i - ~ } f~'l ¢ondj M]

¢ondj M ~ oondkA]
{immediate}

[cond o~ ̂ cond {.21
immediate}

outgoinl Iransltions

Figure 5: Decision to L G S P N (P r e - t r a n s f o r m a t i o n)

3.5 Merges
Merges are used to reunify control flow, separated in diver-

gent branches by decisions (or outgoing transitions of states
labelled with guards). Often they are just a notational con-
vention, as reunification may be modelled as ingoing transi-
tions of a state.

Translation of a merge pseudostate M depends on the
kind of target element of its outgoing transition. Figure 6
(cases 5.a and 5.b) shows the direct translation of the
model, £$M , according to the condition expressed below.

(a) £$M = £ 8 ~ ¢==~ (PS.outgoing.target
Pseudostate V PS.outgoing.target.kind ~ join) (to join)

(b) £$M = ~ 3 ~ ¢==~ (PS.outgoing.target C
Pseudostate A PS.outgoing.target.kind = join) (not to
join)

3.6 Concurrency support items
UML provides two elements to model concurrency in an

AD: forks and joins. It is well known that Activity Dia-

~Itdo_fork p 2 1 i a i _ n e x t x pZlini next×

l (4.b) r o t k -

I ! :]
p l l i n i_M ~ p l l in i_FS

tlldo_merge
t2ld°--nex~× ~ tllending

As mot a joan pseudostate g.a Final State

pllini_SR ~~391111p21e_evx ~0 pllini_SS
p21e evx tll£eceipt ~ tl~sending

O £11receipt tllsending p21e_evx
........... join ~ ~i22~252 join

ni_nextx

(7.el Signal recei 17.b) Signal receip' 7.oi Signal sendin 7.d) Signal sendin
Target vertex iJ Target vertex is a Target veEtex is TaEget vertex is a

nor a Join Join peeudoetate not . joan join peeudoltate

Figure 6: Fork, Join, Merge, Final State, Signal

Sending and Signal Receipt to LGSPN

grams were born as a mixture of characteristics from three
different sources: the event diagram of Odell, SDL and Petri
nets. Forks and joins seem to have been directly inherited
from the latter (although there was already some concur-
rency support in Odell's event diagrams). Translation into
LGSPN models is quite simple in both cases.
• Given a join pseudostate J , it is translated into the la-

belled system £ $ j , shown in figure 6, case 4.c.
To translate forks, three steps must be followed:
Given a fork pseudostate F let q be the number of its

outgoing transitions O~. Then, according to the transla-
tions shown in figure 6, we have a basic LSGPN £$F B =

B B (SF, OF, A~) (case 4.a in the figure) and one LGSPN (case
4.b) for each outgoing transition t, £S~ = (SF,t Cg,t AF).t
Therefore, we have q + 1 LGSPN models that need to
be combined to get a model of the pseudostate, £$F =
(SF,¢F,AF). The LGSPNs corresponding to each set of
kind of transitions are now obtained by superposition:

i=l,...,q
c s ~ ° = I I c s ~ °'

do-fork,Lstvertex P

And the final LGSPN £$F is composed following the
expression:

L S F = C S ~ f l CS~ °
do_fork

3.7 Initial and final states
Initial pseudostates and final states are elements inherited

from UML state machines semantics. However, unlike it
happened on UML SMs [6], the initial pseudostate is not
translated into an LGSPN model when translating an AD,
as no action can be attached to its outgoing transition. On
the other hand, final states are translated, but the resulting
LGSPN is different from that shown in [6].

Given a final state FS, the LGSPN model £SFS =
(SFs, ¢FS, AFS) equivalent to the state is defined according
to the translation shown in figure 6, case 6.a.

31

3.8 Signal sending and signal receipt
Signal sending and signal receipt symbols are control

icons. T h a t means they are not really necessary, but are
used as a nota t ional convention to specify common model-
ing mat ters . In fact, they seem to be the clearest evidence
of the SDL nota t ion inheri tance. In our specific case, these
symbols are the only mechanisms we allow to model the pro-
cessing of external events, and are equivalent to labelling
the outgoing t ransi t ion of a s ta te wi th a SendAct ion corre-
sponding to the signal as an effect or wi th the name of the
SignalEvent expected as the t r igger event, respectively.

As these symbols are control icons, there is not a meta-
class corresponding to this elements in the UML metamodel .
So we assume tha t before t rans la t ing the d iagram a unique
identif icator is assigned to each one of these elements, so
when we say t.target.name, where t is a incoming transi-
t ion of the control icon, we are refering to this identificator
(instead of the name of the real ta rget S ta teVer tex according
to the metamodel) .

Given a signal sending/ rece ip t symbol CS, the t rans la t ion
of the symbol depends on whether this ta rget element is a
join pseudosta te or not:

If the symbol is a signal sending, then let SIGS be
its pre-assigned identificator. Its t rans la t ion into an
L G S P N model LSsics is shown in figure 6, cases 7.c-
7.d.

If the symbol is a signal receipt, then let SIGR be
its pre-assigned identificator. Its t rans la t ion into an
L G S P N model /2$sicR is shown in figure 6, cases 7.a-
7.b.

It must be noted that , as far as signal sendings is con-
cerned, we have assumed tha t at most one event is gener-
a ted for simplicity, bu t definition can be extended adding
new places in the L G S P N to consider tha t possibili ty as
well.

3.9 Constructions not considered yet
Some elements from ADs are not considered as relevant

for per formance evaluat ion in the scope of our work; thus
they are not t rans la ted into L G S P N models. These elements
are:

Swimlanes, which are mechanisms to organize visually
the s tates wi th in the diagram, lack a well-defined se-
mantics. In our interpreta t ion, we did not assign them
any par t icular role; and therefore they are not t rans-
lated. Anyway, we are aware tha t they could be used
to model where the processes are executed, providing
then a useful per formance information. This possibil-
ity should be evalua ted as soon as we el iminate our
' infinite resource' assumption.

Action-Object Flow relationships, as they do not pro-
vide any addi t ional concre te informat ion about the be-
havior of the system.

Deferrable events as, according t o our in terpre ta t ion
(see section 2), any event is deferred in an AD (except,
obviously, SignalEvents when a signal receipt symbol
is found).

4. THE SYSTEM TRANSLATION PRO-
CESS

In the previous section we have presented our me thod to
t rans la te every AD element into L G S P N models. Here, we
will focus on the whole system t rans la t ion process, present-
ing an overview of the steps to follow and al locat ing the ideas
a l ready presented in their own t iming. The process includes
the complete t rans la t ion me thod for ADs and the way to
in tegrate the result ing L G S P N wi th the ones obta ined from
the t rans la t ion of U M L SMs and SDs [6].

4.1 Translating activity diagrams into LGSPN
As an initial premise we assume tha t every AD in the

system descript ion has exact ly one initial s ta te plus, at least,
one final s ta te and another s ta te from one of the accepted
types (action, subact iv i ty or call s tate) . The t rans la t ion
of an AD can then be divided in three phases, which are
presented in the subsequent paragraphs.

4.1.1 Pre-transformations
Before t rans la t ing the AD into an L G S P N model, we need

to apply some simplifications to the d iagram in order to
proper ly use the t ransla t ions given in section 3. These sim-
plifications are merely syntact ical so the system behaviour
is not altered. Most relevant ones are:

• Suppression of decisions. F igure 5 shows a part icu-
lar case of this kind of t ransformat ion. New decisions
could be found in any branch of the chaining tree, but
the figure has been simplified for the sake of simplicity.

• Suppression of merges / forks / joins chaining, bring-
ing them together into a unique merge / fork / join
pseudosta te (this process is tr ivial) .

• Deduct ing and making explici t the implici t control
flow in act ion-object flow relationships, where aplica-
ble.

• Avoidance of bad design cases (e.g., when the ta rge t
of a fork pseudosta te is a join pseudostate) .

4.1.2 Translation process
Once pre- t ransformat ions are applied we can proceed to

t rans la te the d iagram into an L G S P N model. This is done
following three steps:

s t e p 1 Transla t ion of each d iagram element, as shown in
section 2.

s t e p 2 Superposi t ion of the L G S P N s corresponding to the
whole set of instances of each AD element type:

A S E A c t i o n S t a t e s

L s t v e r t e x P

S S E S u b a c t i v i t y S t a t e s

c s r g ~= [I csss
L s t v e r t e w P

C S E C a l l S t a t e s

cs~ ~= II £8~s
L s t v e r t e x P , L e v P

S I G S @ S i g n a l S e n d i n g s

csi~ ~°= [I cssiG~
L s t v e r t e x P , L e v P

SIGRC S i g n a l R e c e i p t s

c s ~ ~ = II CS~zGR
L s t v e r t e w P , L e v P

32

M E M e r g e s F E F o r k s

csF& ~= II CSM tSAR2 = II cs~
L s t v e r t e x P L s t v e r t e w P

J E J o i n s FS E F i n a l S t a t e s

csZg ~ = II cs~ c s ~ = II c s ~
L s t v e r t e x P e n d _ A G

s tep 3 Working out the LGSPN for the diagram itself by
superposition of the LGSPNs obtained in the last step:

csac = (((((((~s~ ~ II c s ~ ~)
L s t v e r t e x P , L e v P

I I c&%~D II c s ;g ~) [I c s f :)
L s t v e r t e x P L s t v e r t e x P L s t v e r t e x P

L s t v e r t e x P L s t v e r t e x P , L e v P

L s t v e r t e x P , e n d _ A G L s t v e r t e x P

It must be noted that the compositional approach does
not deal with recursive invocations between activities. E.g.,
let AG1 be an activity graph where SS is a subactiv-
ity state in it, SS E AGl.transitions.source, and let AG2
be the activity graph that the state invokes, AG2 =
SS.submachine. Also let SS ~ be a subactivity state in AG2,
SS~ E AG~.transitions.source, which invokes AGi , AG1 =
SS(submachine. For this kind of situations, we would need
coloured Petri nets (with an unbounded number of colours),
in order to identify different invocations. Note that the
method to combine different activity diagrams (as well as
other diagram types) is depicted in section 4.2.

4.1 .3 Pos t -op t imiza t ions

Contrasting with pre-transformations, which are manda-
tory, post-optimizations are optional. Their objective is just
to eliminate some spare places and transitions in the result-
ing LGSPN so as to make it more compact without altering
its semantics. One example of these kind of transformations
would be, in subnets of the LGSPN corresponding to out-
going timed transitions of action states £ S ~ r , the removal
of the superfluous immediate transitions (and their output
place) in case of no conflict.

4.2 Composing the whole system
As it has been stated before, in terms of performance eval-

uation we use UML ADs exclusively to describe doActivities
in SCs or activities inside subactivity states of others ADs.
Hence, the merging of nets corresponding to SCs and ADs
will be dealt with first.

In case an activity (modelled with an AD) is invoked from
different states in (one or several) SCs/ADs (by means of
doActivities or subactivity states, respectively), we must
replicate the LGSPN of the corresponding AD (one AD per
invocation). Otherwise, undesirable situations could hap-
pen which would degrade the performance evaluation results
(the resulting Markov chain does not capture properly the
system behaviour). A different solution for this issue would
be using coloured Petri nets (applying a different colour for
each doActivity/subactivity invocation). Obviously this im-
plies that the activities invocation graph must be aeyclic;
hence neither support for Knuth 's coroutines nor recursion
are offered, as already commented in section 4.1.2.

Let us suppose the replication process has al-
ready been executed. Let d be the number of ADs
used at system description and Linterfaces P =
{Lin i - topP,LevP,Lend_AGP}, where Lini_top P is the
set of initial places of the LGSPNs corresponding to the
ADs and Lcnd_AG P the set of final places of those nets.
Now, we can merge the referred LGSPNs by superposition
(of places):

A G C A c t i v i t y D i a g r a m s

£8~d = I I £8AC
L i n t e r f a c e s P

Now let £8~c be the LGSPN corresponding to the transla-
tion of the set of SCs in the model. £8 '~ was previously ob-
tained by composition (superposition of places) of the nets
obtained for each SC and subsequent removal of sink ac-
knowledge places (see [6]).

Then let T_act be the set of transitions in £8'src labelled
activi ty [6] which represent activities that are described with
activity diagrams. £ 8 ~ will be the result of that labelled
system with the removal of this set of transitions, £3~c =
fl:8rs~c \ T_act. Ingoing places for these transitions (labelled
end_entry_A in £ 8 ~) will be now labelled ini_top, where
top is the name of the first element of the activity diagram
AG ~ that represents the activity, top = AG'.top.name. Simi-
larly, outgoing places (labelled compl_A) will be now labelled
e nd_A G (

Once done, we can merge the LGSPN systems £ 8 ~ and
£8~d:

£ 8 d = £ 8 ~ I I £ 8 ~
L i n t e r f a c e s P

The resulting net £Ssc-ad often represents the whole sys-
tem behavior. However, this behavior can be constrained to
obtain performance measures for a particular scenario (pat-
tern of interaction). That is done by merging £Ssc-ad and
the LGSPN corresponding to a specific SD into a unique
LGSPN £8 , mainly by synchronization (i.e., superposition
of transitions). Paper [6] describes two approaches for doing
an analogous operation, using the referred net £8sc instead
of LSsc-ad. Nevertheless, both procedures are still directly
applicable to the resulting LGSPN £ 8 s c - - a d .

A sample case of the translation of a very simple system
is illustrated in figure 7. The reader is encouraged to check
out [18] to obtain a wider vision of our proposal under the
prism of a more complex case study. Here we will focus on a
small portion of the system modelled in that paper. The ex-
ample is quite representative as it formalizes the POP3 pro-
tocol, a well-known instance of the client-server paradigm in
which nodes perform time-relevant internal processing while
there is some intercommunication between them.

More concretely, we built the model to evaluate the be-
haviour of a mail client using the referred protocol. Thus, we
used three SCs (to respectively model the client, server and
user dynamics), one SD (to model the use case we wanted
to analyze) and one AD (to model the internal processing
in the server for the authentication phase), which is shown
in Figure 7. Additionally, we include there the LGSPN ob-
tained by applying the proposal described in this paper to
this last diagram.

The referred AD represents how the login (authentication)
process is performed at the server side. The server waits for
a username from the client, and then for a password; if both

33

match up with those held in the local machine, the mail-
drop is locked and the server ends up the authentication
phase. On the other hand, if anything fails it returns a er-
ror status message and returns to the initial state. Note
that we estimated some (hypothetical) event probabilities
and task durations and annotated them as tagged values.
Those annotations will allow us to perform some quantita-
tive (performance) analysis over the model.

It must be remarked that the AD is just a part of the
whole system description. That results in the lack of tokens
in the initial marking of the net in Figure 7. The reader is
refered again to the paper [18] to understand how the Petri
net for the whole system is composed.

+0.8~

m

F i g u r e 7 : P O P 3 P r o t o c o l (Server s ide): A u t h e n t i -

c a t i o n

5. SOFTWARE P E R F O R M A N C E TOOL
To accomplish our objective of successfully integrating

techniques of performance evaluation in the software engi-
neering process, an special effort in the automatization of
the method is required. To do so, we have developed a
module in Java r that translates the SC as proposed in [21]
and the AD as proposed in this work. The module has been
incorporated to the ArgoUML CASE tool [4]: The input
diagrams are provided in the XMI [14] format, while the
output produces a LGSPN in the file format [8, 13].

The module also implements the composition of the re-
sulting LGSPN models for the SCs and ADs as explained
this work. Then, the resulting LGSPN, that represents a
performance model for the modeled system, is directly pro-
cessable by the GreatSPN tool [13] and it has full capability
to make quantitative analysis and obtain performance rates.

Although ArgoUML does not allow a full exploitation of
all the expressivity in the SC and AD that we have dealt
with (since it does not support every model element), our
module provides full capability to translate them. There-
fore, those model elements not contemplated by ArgoUML
should be written by the modeller directly in the XMI file
(or simply using a different front-end CASE tool). Note

that this limitation is introduced by the current state of the
ArgoUML tool.

Finally, it must be noted that an special effort has been
made to obtain highly-legible GreatSPN nets, avoiding the
superimposition of places and transitions in the generated
GreatSPN files.

6. RELATED W O R K
Although there are several works devoted to obtain formal

models from the UML SC [16, 15, 29] or the UML SD [31,
7, 3], some of them with performance evaluation purposes,
the AD has not been studied yet so intensively. However, we
would like to remark two significant works, which will be re-
viewed below. The first one (Eshuis et al.) is concerned with
semantical issues of the AD, while the second one (Petriu
et al.) deals with usign ADs for performance evaluation on
stochastic models.

One of the main challenges in adapting UML diagrams to
performance evaluation purposes is choosing an appropriate
formal semantics. I.e., neither too restrictive (allowing the
modeler a good degree of expressivity) nor too permissive.
After all, UML's informal semantics should be respected;
among other reasons, because communication fluency be-
tween modelers is a very basic, strong SPE principle.

UML 1.5 defines AD semantics in terms of SCs. That is
subject to change in UML 2.0, which will define a (entirely
new) token-based semantics. An interesting contribution to
the semantics discussion can be found in [10]. Eshuis et al.
had previously defined a step-based, STATEMATE-Iike, se-
mantics [ii] for ADs. In the former cite, the authors discuss
the (un)suitability of Petri nets for workflow modelling, in
contrast to their formalized ADs. The reasoning is well jus-
tified under the light of the application field, as these may be
more appropriate for modelling reactive systems (i.e., depen-
dent on the environment) as common workflow processes.

Here we define AD semantics in terms of (labelled)
GSPNs. We do not strive for reactive systems since, for
now, we strictly utilize ADs for modelling processes not de-
pendent on external events, as the UML specification [26]
suggests. Eshuis semantics are aimed to business mod-
elling. Meanwhile, we apply ADs to describe method in-
vocations internals, especially when complex concurrent be-
havior must be depicted. Needless to say, this is one of the
basic roles defined by OMG for the AD.

Due to the nature of this application, we are (theoreti-
cally speaking) closer to OMG's perspective, when defining
a token-game semantics in the UML 2.0 final draft, than to
Eshuis step-based semantics. That is not very exact either,
as there are rather profound revisions in the AD semantics
(e.g., it seems that outgoing transitions from action states
will have now a fork-like semantics, instead of conditional
branching-like). Moreover, our interpretation is stochastic,
not exactly non-deterministic as in plain Petri nets, so as
to allow performance evaluation. But we share a focus on
the modelling of active systems, while we allow complex,
parallel, and even unsafe, behaviors.

An interesting work has been developed in [27], where ac-
tivity diagrams are translated into layered queue networks
(LQN) using a graph grammar based transformation. A
graph grammar is a set of production rules that generates
a language of terminal graphs and produces non terminal
graphs as intermediate results. A production rule is applied
to the abstractions that represent the activity diagram, then

34

the activity diagram graph is parsed to check its correction
and to divide it into subgraphs that correspond to the LQN
elements. As it can be seen the approach to formalize activ-
ity diagrams is absolutely different from ours, which is based
in the composition of the submodels obtained for each ab-
straction.

Concerning our tool, it is difficult to make a reasonable
comparison because to our knowledge there exist six tools [5,
2, 19, 27, 12, 17] for performance evaluation based on UML,
but only the last one uses stochastic Petri nets as perfor-
mance model. Besides, their model semantics and sup-
ported diagrams strongly differ from our approach. DSP-
NExpress2000 [17], syntactically speaking, seems to allow
only the modelling of simple SCs. In SimML [5], simula-
tion queuing networks models [24] for performance evalua-
tion are obtained from UML class diagram and SD, while
in the PERMABASE project [2] models for simulation are
obtained from UML SD and class and deployment diagrams.
Finally, Gilmore et al. [12] employ class and collaboration di-
agrams to obtain analyzable stochastic process algebra mod-
els (namely PEPA models). It is interesting to note that the
supporting software architecture for Gilmore's proposal in-
cludes model checking facilities.

7. CONCLUSIONS
The main contributions of this paper can be summarized

as follows:

• We have incorporated the AD into our SPE approach
with an specific role: modelling the doActivity con-
cept of the SCs. We have found that under this role,
the AD is a tool to gather performance requirements:
routing rates and actions duration. The annotations
are proposed according to the UML profile [25].

• We have given a translation of the AD (that models
a doActivity) into a stochastic Petri net model. In
this way, it can be composed with any other stochastic
Petri net model that represents a SC that uses the
corresponding doActivity, thus gaining an analizable
model for the system.

• A formal semantics for the AD is achieved in terms
of stochastic Petri nets that allows to check logical
properties as well as to compute performance indices.
Obviously, this formal semantics represents an inter-
pretation of the "informally" defined concepts of the
UML AD. Our interpretation is focused on the ba-
sis that the AD is meant for the description of the
doActivities in a SC. Moreover, we have recalled an
example [18] in the client-server paradigm where the
presented approach was successfnlly applied.

• A Java r module has been incorporated to the Ar-
goUML CASE tool. It allows to translate all the ele-
ments in UML SC and ADs notation as proposed by
our approach. Performance annotations can be in-
troduced to produce a LGSPN model, representing
the system, that can be analyzed by the GreatSPN
tool [13], therefore it is possible to obtain perfornmnce
measures in the steady or transient state. The pro-
cessing of XMI files as input by our module ensures
compliance with current standards.

As future work we are working on the following open is-
sues:

• With respect to UML ADs, conditional forks and more
complex external event processing support, especially
important to solve the problem of 'uninterruptable '
activities due to the use of action states.

• Extension of the Java r module to support UCs and
SDs in order to increase the expressivity at system
description.

APPENDIX

A. FORMAL DEFINITION OF COMPOSI-
TION OF LGSPNS

A.O.O.1 Place and transition superposi t ion o f two
ordinary LGSPNs . .

Given two LGSPN ordinary systems P-.Si = ($1, ¢1,)~1)
and £$2 = ($2, ~ , A2), the LGSPN ordinary system E.S =
(s,¢,~):

£ S = £$1 I I £$2
LT,Lp

resulting from the composition over the sets of (no 7-) labels
LT and Lp is defined exactly as in our previous works. We
encourage the reader to check out any of the following refer-
ences for further information: [6, 20]. Nonetheless, figure 1
depicts informally the semantics of the superposition oper-
ator (that should be sufficient for a basic comprehension).

A.O.O.2 P lace and transit ion superposi t ion and sim-
pli f ication o f two ordinary LGSPNs . .

Given two LGSPN ordinary systems /2S1 = (Sl,~bl, ,~1)
and E.S2 = ($2, ~P2, A~), the LGSPN ordinary system F_.$ =
(s,¢,~):

G
£ S = £$1 £$2

LT,Lp

resulting from the composition over the sets of (no 7-) labels
LT and Lp is defined as follows. Let ET = LT A Ai(T1) A
A2(T2) be the subset of LT comprising transition labels that
are common to the two LGSPNs, and T f T be the set of all
transitions in £$1 that are labeled with a label in ET. Same
definitions apply to/2S2.

Then P, T, and the functions F E { I () , O 0 , H 0 , H0,
M ° () , ¢ 0 , A()} are defined exactly as it was made for the
previous operator (]]), whereas function W 0 is equal to:

8

w (t) =

wi (t)
w~(t)
w~(t~) + w~(t~)

B. REFERENCES

if t E T1 \T1ET
if t e T2\ T~ T
i f t _= (tl ,t2) C T1ET x T y T

A/~l(t l) ~ . - A2(t2).}

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Franeeschinis. Modelling with Generalized
Stochastic Petri Nets. John Wiley Series in Parallel
Comput ing- Chichester, 1995.

[2] D. Akehurst, G. Waters, P. Utton, and G. Martin.
Predictive Performance Analysis for Distributed

35

Systems - PERMABASE position. In One Day
Workshop on Software Performance Prediction
extracted from Designs, Heriot-Watt University,
Edinburgh, November 1999.

[3] F. Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi.
Deriving performance models of software architectures
from message sequence charts. In Proc. of 2 nd Int.
Workshop on Software and Performance
(WOSP2000), pages 47-57, Ottawa, Canada,
September 2000. ACM Press.

[4] ArgoUML project, h t t p : / / a rgouml . t i g r i s , org/ .
[5] L.B. Ariel and N.A. Speirs. A UML tool for an

automatic generation of simulation programs. In Proc.
of 2 nd Int. Workshop on Software and Performance
(WOSP2000), pages 71-76, Ottawa, Canada,
September 2000. ACM Press.

[6] S. Bernardi, S. Donatelli, and J. Merseguer. From
UML sequence diagrams and statecharts to analysable
Petri net models. In Proc. of 3 rd Int. Workshop on
Software and Performance (WOSP2002), pages 35-45,
Rome, Italy, July 2002. ACM Press.

[7] J. Cardoso and C. Sibertin-Blanc. Ordering actions in
sequence diagrams of UML. In Proc. of 23 th Int.
Conference on Information Technology Interfaces
(ITI2001), Pula, Croatia, 2001.

[8] G. Chiola. GreatSPN 1.5 software architecture.
Technical report, Universit& di Torino, April 1991.

[9] S. Donatelli and G. Franceschinis. PSR Methodology:
integrating hardware and software models. LNCS
1091, in Proc. Application and Theory of Petri Nets,
pages 133-152, June 1996.

[10] R. Eshuis and R. Wieringa. A comparison of Petri net
and activity diagram variants. In Reisig Weber, Ehrig,
editor, Proc. of 2nd Int. Collaboration on Petri Net
Technologies for Modelling Communication Based
Systems, pages 93-104. DFG Research Group "Petri
Net Technology", September 2001.

[11] R. Eshuis and R. Wieringa. A real-time execution
semantics for UML activity diagrams. In Heinrich
Hugmann, editor, LCNS 2029, in Fundamental
Approaches to Software Engineering (FASE2001),
pages 76-90. Springer-Verlag, 2001.

[12] S. Gilmore and L. Kloul. A unified approach to
performance modelling and verification. Paper
presented at Dagstuhl seminar on "Probabilistic
Methods in Verification and Planning".

[13] The GreatSPN tool.
http ://www. di. unit o. it/~great spn.

[14] Object Management Group. XML Metadata
Interchange (XMI) specification, January 2002.
version 1.2.

[15] D. Latella, I. Majzik, and M. Massink. Towards a
formal operational semantics of UML statechart
diagrams. In Proc. of 3 Td Int. Conference on Formal
Methods for Open Object-Based Distributed Systems
(FMOODS99), pages 331-347, Florence, Italy,
February 1999. Kluwer.

[16] J. Lilius and I.P. Paltor. The semantics of UML state
machines. Technical report no.273 - Turku Centre for
Computer Science, Finland, May 1999.

[17] C. Lindemann, A. Thummler, A. Klemm,
M. Lohmann, and O.P. Waldhorst. Quantitative

system evaluation with DSPNexpress 2000. In Proc. of
2 ~d Int. Workshop on Software and Performance
(WOSP2000), pages 12 17, Ottawa, Canada,
September 2000. ACM Press.

[18] J. P. Ldpez-Grao, J. Merseguer, and J. Campos.
Performance engineering based on UML 85 SPN's: A
software performance tool. In Proe. of 7 th Int.
Symposium On Computer and Information Sciences
(ISCIS2002), pages 405-409, Orlando, Florida,
October 2002. CRC Press.

[19] J. Medina, M. Gonz£1ez, and J. M. Drake.
MAST-UML: Visual modeling and analysis suite for
real-time applications with UML.
http ://mast. unican, es/umlmast/.

[20] J. Merseguer. Software Performance Engineering based
on UML and Petri nets. PhD thesis, Departamento de
Informatica e Ingenieria de Sistemas. Universidad de
Zaragoza, Spain, March 2003.

[21] J. Merseguer, S. Bernardi, J. Campos, and
S. Donatelli. A compositional semantics for UML state
machines aimed at performance evaluation. In
M. Silva, A. Ciua, and J.M. Colom, editors, Proc. of
the 6 th Int. Workshop on Discrete Event Systems
(WODES200P), pages 295-302, Zaragoza, Spain,
October 2002. IEEE Computer Society Press.

[22] J. Merseguer and J. Campos. Exploring roles for the
UML diagrams in software performance engineering.
In Proc. of 3 Td Int. Conference on Software
Engineering Research and Practice (SERP'03), pages
43-47, Las Vegas, USA, June 2003. CSREA Press.

[23] J. Merseguer, J. Campos, and E. Mena. Analysing
internet software retrieval systems: Modeling and
performance comparison. Wireless Networks: The
Journal of Mobile Communication, Computation and
Information, 9(3), May 2003.

[24] M.K. Molloy. Fundamentals of Performance
Modelling. Macmillan, 1989.

[25] Object Management Group, http:/www.omg.org.
UML Profile for Schedulabibity, Performance and
Time Specification, March 2002.

[26] Object Management Group, http:/www.omg.org.
OMG Unified Modeling Language Specification, March
2003. version 1.5.

[27] D. Petriu and H. Shen. Applying the UML
performance profile: Graph grammar-based derivation
of LQN models from UML specifications. In Tony
Field, Peter G. Harrison, Jeremy Bradley, and Uli
Harder, editors, LNCS 2324, in TOOLS 2002, pages
159-177, London, UK, April 2002. Springer-Verlag.

[28] Object Management Group. http://www.omg.org.
[29] A.J.H. Simons. On the compositional properties of

UML statechart diagrams. In Proc. of Rigorous
Object-Oriented Methods (ROOM2000), January 2000.

[30] C. U. Smith. Performance Engineering of Software
Systems. The Sei Series in Software Engineering.
Addison-Wesley, 1990.

[31] A. Tsiolakis. Integrating model information in UML
sequence diagrams. In Proc. of 2 nd Int. Workshop on
Graph Transformation and Visual Modeling
Techniques (GT-VMT2001). Electronic Notes in
Theoretical Computer Science. Springer-Verlag, July
2001.

35

