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A B S T R A C T  
Over the last decade, the relevance of performance evalua- 
tion in the early stages of the software development life-cycle 
has been steadily rising. We honestly believe that the inte- 
gration of formal models in the software engineering process 
is a must, in order to enable the application of well-known, 
powerful analysis techniques to software models. In pre- 
vious papers the authors have stated a proposal for SPE, 
dealing with several UML diagram types. The proposal for- 
malizes their semantics, and provides a method to translate 
them into (analyzable) GSPN models. This paper focuses 
on activity diagrams, which had not been dealt with so far. 
They will be incorporated in our SPE method, enhancing its 
expressivity by refining abstraction levels in the statechart 
diagrams. Performance requirements will be annotated ac- 
cording to the UML profile for schedulability, performance 
and time. Last but not least, our CASE tool prototype will 
be introduced. This tool deals with every model element 
from activity diagrams and ensures an automatic transla- 
tion from ADs into GSPNs strictly following the process 
related in this paper. 

Keywords :  UML, software performance, Generalized 
Stochastic Petri nets, eompositionality, activity diagrams, 
CASE tool, UML Profile for schedulability performance and 
time specification 

1. I N T R O D U C T I O N  
The Unified Modeling Language (UML) [26] is a semi 

formal language developed by the Object Management 
Group [28] to specify, visualize and document models of soft- 
ware systems and non-software systems too. UML defines 
three categories of diagrams: static diagrams, behavioural 
diagrams and diagrams to organize and manage application 
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modules. Being the objective of our works the performance 
evaluation [24] of software systems at the first stages of the 
software development process, as proposed by the software 
performance engineering (SPE) [30], behavioural diagrams 
play a prominent role, since they are intended to describe 
system dynamics. These diagrams belong to five kinds: Use 
Case diagram (UC), Sequence diagram (SD), Activity dia- 
gram (AD), Collaboration diagram and Statechart diagram 
(SC). 

In this paper we explore a possible role for the AD in the 
SPE process: the description, at a lower level, of specific ac- 
tivities from an SC diagram. Employing the SC (which mod- 
els the life cycle of the objects in the system) together with 
the AD allows us to model all the paths in the (potential) 
system dynamics. Actually, this work fits in a more general 
SPE approach developed by the authors, that deals with 
other UML behavioural diagrams: The UC diagram was 
proposed in [22] to model the usage of the system for each 
actor; in [21], the SC was addressed (by means of the UML 
state machines package) to obtain a performance model of 
a system described as a set of SCs; while in [6], the SD 
was studied together with the SCs to obtain a performance 
model representing a concrete execution of the system. 

In this environment, we base our interpretation of the AD 
on the fact that they are suitable for internal flow process 
modeling, as expressed in [26]. Therefore they arerelevant 
to describe activities performed by the system, usually ex- 
pressed in the SC as doAct iv i t ies  in the states. Other inter- 
pretations for the AD propose it as a high level modeling 
tool, that of the workflow systems [11], but at the moment 
we do not consider this role in our SPE approach. 

In the following we give the big picture of our SPE ap- 
proach before the inclusion of the AD. First the system 
is modeled by means of the proposed UML diagrams, and 
performance requirements are gathered according the UML 
profile for performance [25]. Since UML defines "infor- 
mally" their semantics, we propose a method to trans- 
late each diagram into a Labeled Generalized Stochas- 
tic Petri net (LGSPN), an extension of the well-known 
GSPN formalism [1], then gaining a formal semantics for 
them. Afterwards, we give a procedure to compose these 
LGSPNs, therefore gaining an analyzable model (a perfor- 
mance model) for the system or for a particular scenario 
(depending on which diagrams have been modeled, as ex- 
pressed above). Obviously, the translation method implies 
taking decisions on the interpretation of the diagrams. Fi- 
nally, the performance models obtained can be analyzed or 
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F i g u r e  1: S u p e r p o s i t i o n  o f  places  and  t r a n s i t i o n s  

simulated using the  G S P N  tools [13] to obta in  performance  
indices. Note  tha t  the  L G S P N  formalism was chosen for our 
me thod  due to the  number  of analysis and s imulat ion tools 
available for it. 

Despi te  being aware tha t  resource model ing is a funda- 
menta l  issue in S P E  terms,  at the  moment  we take an "in- 
finite resource" assumption.  Taking into account  tha t  our 
approach is not  meant  for real- t ime domain  but  to estab- 
lish pr imary  results in early stages of dis t r ibuted systems 
modeling,  it could be a reasonable assumption.  Since the  
approach is based on a composi t ional  model l ing of compo-  
nents  (LGSPNs) ,  the  considerat ion of the use of resources 
could be included by model l ing them (mainly in the  de- 
p loyment  diagram) as addi t ional  components  and by using 
similar connect ion rules between these components  and the  
rest of the  system. 

In this work, and in order to in tegrate  the  AD in our ap- 
proach according to the previously referred in terpre ta t ion  
(i.e. act ivi t ies  description),  we give a formal semantics  to 
the AD. It  is accomplished by t rans la t ing  into an L G S P N  
each one of the concepts  defined in the  UML act iv i ty  graphs 
package and by composing the  result ing LGSPNs,  using the  
operators  defined in Appendix  A, into a new one tha t  rep- 
resents the  whole AD. Figure  1 depicts  an informal repre- 
senta t ion of the  composi t ion (superposit ion) opera tor  over 
places and transit ions.  Finally, it is shown how to compose 
the L G S P N  represent ing an AD with  the  L G S P N  represent-  
ing the  SCs tha t  use the  d o A c t i v i t y  modeled  by the  AD. 
The  result  of the  composi t ion is a new L G S P N  tha t  repre- 
sents a performance model  for the  system, according to our 
proposal  [20]. 

Therefore  in the  final per formance  model,  we obta in  a rea- 
sonable degree of expressivi ty to deal wi th  the  descript ion 
and evaluat ion of the  dynamics  of large and complex sys- 
tems,  such as d is t r ibuted systems where we may  want  to take 
into account  inter-node communica t ion  and the  occurrence 
of external  events (using SCs, SDs) as well as the  internal,  
concurrent  processing wi th in  the  nodes (using ADs). 

Regard ing  the  expressivi ty enhancement ,  several reasons 
back the  assert ion above. First ,  it is well-known tha t  ADs 
are more appropr ia te  for model l ing parallelism. Certainly,  
one can use nested s tates  in SCs, but  this is undesirable 
(even deprecated)  and, fur thermore,  inhibits  us from mod-  
elling unsafe system behaviour .  Additionally,  we are unable  
to model  shared methods  wi thout  ADs: We have not  deal t  
so far wi th  s tat ic  d iagrams (as the class diagram),  and thus 
we cannot  define (yet) shared methods  by means of class in- 
heritance.  However, we can define a me thod  dynamics  using 
an AD, invoking this model  from different SCs. 

Fur thermore ,  in this paper  we briefly overview our proto- 
type  tool,  which implements  our me thod  for ADs: a C A S E  
tool  front end is used to design performance  anno ta ted  mod-  
els whereas the  tool  itself constructs  their  t rans la t ion  into 

GSPNs.  These  nets are finally analyzed wi th  a proper  per- 
formance evaluat ion tool (namely, Grea tSPN [13]). 

The  rest of the article is organized as follows: Section 2 
enumerates  the  main rules of the  t rans la t ion  method.  
Section 3 analyzes the  t rans la t ion of each element  in the  
AD into a stochastic Petr i  net  model.  Section 4 discusses 
how the  stochast ic  Pet r i  net  model  for the  whole AD is 
obtained.  Note  tha t  a fairly concise example  has been 
included at the  end of the  section in order to i l lustrate  
this process. Section 5 briefly presents  our tool  prototype.  
Section 6 explores the bibliography. Finally, section 7 
summarizes  the  paper  and discusses future extensions. 

D e f i n i t i o n s  
We adopt  the no ta t ion  defined in [1] for GSPNs,  but  sim- 

plified to consider only ordinary systems (Petr i  nets in which 
arcs have weight at most  one). A G S P N  system is a 8-ple 
S = (P, T, I1, I ,  O, H,  W, M ° ) ,  where P is the  set of places, 
T is the  set of immedia te  and t imed transi t ions,  P A T = 0; 
lII : T ~ ~xl is the pr ior i ty  funct ion tha t  maps  transi-  
t ions onto na tura l  numbers  represent ing their  pr ior i ty  level, 
by default ,  t imed t ransi t ions have pr ior i ty  equal  to zero; 
I ,  O, H : T ~ 2 P are the  input ,  output ,  inhibi t ion func- 
tions, respectively, tha t  map  t ransi t ions  onto the  power set 
of P ;  W : T ~ lR is the  weight funct ion tha t  assigns 
real (positive) numbers  to rates of t imed t ransi t ions  and to 
weights of immedia te  transit ions.  Finally, M ° : P ~ ~Xl is 
the  initial mark ing  function. 

A labeled ordinary  G S P N  (LGSPN)  is then  a t r iplet  £ S  = 
( S , ¢ ,  A), where S is a G S P N  ordinary  system, as defined 
above, A : T ~ L T [_J T is the  labeling funct ion tha t  assigns 
to a t rans i t ion  a label belonging to the  set L T 0 ~- and ¢ : 
P ~ L p U T is the  labeling function tha t  assigns to a place 
a label belonging to the  set L P U T. T-labeled net  objects  
are considered to be internal.  

Note  that ,  wi th  respect  to the  definition of L G S P N  system 
given in [9], here bo th  places and t ransi t ions can be labeled, 
moreover,  the same label can be assigned to place(s) and 
to t ransi t ion(s)  since it is not  required tha t  L T and L P are 
disjoint. 

2. ACTIVITY DIAGRAMS FOR PERFOR- 
MANCE EVALUATION 

Act iv i ty  d iagrams represent  U M L  act iv i ty  graphs and are 
jus t  a var iant  of U M L  state  machines  (see [26], section 3.84). 
In fact, a UML act iv i ty  graph is a special izat ion of a U M L  
state  machine (SM), as it is expressed in the  U M L  meta-  
model  (see figure 2). The  main goal of ADs is to stress the  
internal  control  flow of a process in contrast  to SC diagrams,  
which are often driven by external  events. 

As our object ive  is to use ADs  to refine d o A c t i v i t i e s  in 
SCs and then  to obta in  predict ive  performance  measures  
from the  performance  model  obta ined  from these diagrams,  
we need addi t ional  model ing  information,  such as rout ing 
rates or the  dura t ion  of the  basic actions. We propose to 
annota te  the  AD to gather  this informat ion according to 
the UML profile [25]: subsect ion 2.1 describes this proposal.  

It  must  be noted tha t  in this paper  we only focus in those 
elements  proper  of ADs. See that ,  according to UML spec- 
ification ([26], section 3.84), a lmost  every s ta te  in an AD 
should be an action or subact iv i ty  state,  so a lmost  every 
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F i g u r e  2: U M L  A c t i v i t y  G r a p h s  m e t a m o d e l  

t ransi t ion 1 should be tr iggered by the ending of the execu- 
t ion of the ent ry  act ion or ac t iv i ty  associated to the state.  
Since UML is not  strict  at this point,  then  the  elements 
from the SMs package could occasionally be used with  the  
in terpre ta t ion given in [21]. 

As far as this issue is concerned, our decision is not  to 
allow other  states than  action, subact iv i ty  or call states,  and 
thus to process external  events jus t  by means of call s tates 
and control icons involving signals, i.e. signal sendings and 
signal receipts. As a result  of this, events are always deferred 
(as any event is always deferred in an action state), so an 
activity will not ever be interrupted when it is described by 
an AD. 

2.1 Performance annotations 
Concerning performance requirements, as we have ex- 

pressed above, we consider to gather in the AD routing rates 
as well as the action durations. Then, from the annotations 
proposed in the UML profile [25], we consider the stereo- 
type <<PAstep>> together  wi th  its tag  definitions PAprob 
and PArespTime, tha t  will allow to annota te  respectively 
rout ing rates and action durations.  

Therefore,  the format  will be: PAprob = P(k) for rout-  
ing rates (if no probabi l i ty  P(k) is provided we will as- 

1Notice tha t  the word ' t rans i t ion '  has different meanings in 

UML and PNs  domain.  We preserve bo th  meanings in this 

paper  as the context  should be enough to discr iminate  the  

' t rans i t ion '  we are referring to (UML or P N  ' t ransi t ion ' )  

sume an equiprobable sample space, i.e., identical  prob- 
abili ty for each 'b ro ther '  t ransi t ion to be tr iggered);  and 
PArespTima = (<source-modifier>,'max',(n,'s.')), or PAresp- 
Time = (<source-modifier>,'dist',(n-m,'s.')). Where  <sou rce -  
modifier>::= 'req'l'assm'rpred'l'msr'; 'dist' is assumed to be 
an exponent ia l  negat ive dis t r ibut ion and n-m expresses a 
range of time. 

Such annota t ions  will be a t tached  to t ransi t ions in order 
to allow the assignment of different action durat ions  depend- 
ing on the decision. It  implies tha t  the class Transi t ion 
should be included as a base class for the  s tereotype 
<<PAstep>> in [25]. 

Time  annota t ions  will be al located wherever  an action is 
executed (outgoing transi t ions of act ion states,  or outgoing 
transi t ions of decision pseudostates  wi th  an act ion s ta te  as 
input)  and probabi l i ty  annota t ions  wherever  a decision is 
taken, i.e. in the t ransi t ion next  to guard conditions. It  must  
be noticed tha t  there  is a special case where the  performance 
annota t ion  is a t tached to the  s ta te  instead of the outgoing 
transit ion: when the  control flow is not  shown because it 
is implicit  in the act ion-object  flow. We do so because we 
do not want to have performance annota t ions  applied to it, 
as it usually has a different semantics (it is never used for 
model l ing the control flow, except  in this par t icular  case). 

2.2 Proposed translation rules and formal  def- 
initions 

A brief description of each AD element and their  t rans-  
lation to LGSPNs  is presented in section 3. Section 4 il- 
lustrates  the  me thod  to compose those LGSPNs  to obta in  
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the  whole model  for a specific AD, as well as the  me thod  
to compose the previous L G S P N s  with  the  LGSPNs  of the  
SCs obtained according to [21], then  obtaining a model  tha t  
comprehends  all the  possible dynamics  for the  whole system. 
The  overall me thod  is i l lustrated in Figure  3 

As a rule, the  t ransla t ion of each one of AD elements can 
be summar ized  as a three-phased process: 

s t e p  I Transla t ion of each outgoing and self-loop transi-  
tion. Applicable  to action, subact iv i ty  and call states,  
and to fork pseudostates .  Depending  on the  kind of 
t ransi t ion,  a different rule must  be applied. Figures  4 
and 6 depict  the  subnets  tha t  each kind of t ransi t ion 
is t rans la ted  into. 

s t e p  2 Composi t ion  of the  LGSPNs  corresponding to the  
whole set of each kind of t ransi t ions considered in 
step 1. Applicable  to action, subact iv i ty  and call 
states,  and to fork pseudostates.  This  composi t ion is 
formally defined in section 3. 

s t e p  3 Working out  the  L G S P N  for the  element  by super-  
posi t ion of the  L G S P N s  obta ined in the  last step (if 
any) and, occasionally, an addi t ional  L G S P N  corre- 
sponding to the  ent ry  to its associated s ta te  (the so- 
called 'basic '  subnets  for subact iv i ty  states and fork 
pseudostates ,  see figures 4 and 6). 

F o r m a l  d e f i n i t i o n  o f  t h e  L G S P N  s u b s y s t e m s  

The  formal definit ion of one of the  L G S P N  systems shown 
in Figure  4 is s ta ted below. The  rest of the  cases in Figures 4 
and 6 can be s t ra ightforwardly  derived from this example,  
so they  will not  be explici t ly i l lustrated.  

Prom now onward, we will adopt  the Objec t  Const ra in t  
Language [26] (OCL) syntax  to indicate the  image of an 
element  (or of a set of elements)  belonging to the  domain  
of a cer ta in  relation. Let  us consider the  relat ion between 
the  classes Transition and Act ion and the role effect be- 
tween them,  then  the  image of an instance of class Act ion ,  
th rough the  relat ion effect is denoted as Action. effect. Also 
the a t t r ibu tes  of a class A, say at1, and at2 are denoted 
using the dot  notat ion,  A.a t l ,  and A.at2. 

Also, we must  note  that ,  in the  following, we suppose tha t  
every object  derived from ModeIElement metaclass  has an 
unique name wi th in  its nmnespace,  a l though it could be not 
explicit ly shown in the  model.  

A system for an outgoing t imed t ransi t ion ott of an ac- 
t ion s ta te  A S  (see figure 4, case 1.a) is an L G S P N  £ 8 ~  = 

ott ott X ~ )  T,~ ~ (SAs, ~AS, character ized by the  set of t ransi t ions 
= {t~,t2}, and the  set of places P ~ t  = {p~,p2,p3}.  The  
input  and ou tpu t  functions are respect ively equal  to: 

( ( 

i ~ t ( t ) =  {Pl} i f t = t l  O ~ t ( t ) =  {P2} i f t = t l  
{P2} i f t = t 2  {P3} i f t = t 3  

There  are no inhibi tor  arcs, so H ~ t ( t )  = 0. The  priori ty 
and the  weight functions are respect ively equal  to: 

( 
U ~ ( t ) =  0 i f t = t 2  

1 if t = tl 

w ~ ' ( t )  = 

8 
rott if n % ( t )  = 0 

Pcond if ~ ( t )  = cond_ev > 
• 1 o therwise  

where, in this case, rott is the  ra te  pa ramete r  of the t imed 
t ransi t ion t2 and Pcong is the weight of the  immedia te  t ran-  
sition t l .  

The  weight Pcond assigns the  value of the  probabi l i ty  an- 
notat ion,  tha t  is a t tached  to the  AD t rans i t ion  ott with the  
format  PAprob = Pcond. If there  is not  such annota t ion,  Pcond 
is equal  to 1/nt ,  where nt  is the  number  of e lements  in the  
set AS.outgoing.  

The  rate  rott is equal  to 1/n,  when the  t ime annota-  
t ion a t tached  to the  AD t rans i t ion  is expressed in the for- 
mat  PArespTime = (<source-modifier>,max,(n,'s.')), when 
i t  is expressed in the format PArespTime = (<source- 
modifier>,'dist',(n-m,'s.')), then rott is equal to. 2/(n + m). 

The  initial marking funct ion is defined as Vp E 
p ~ t  : M ~ t ° ( p )  = 0. Finally, the  labeling functions are 
equal  to: 

8 
i n i _ A S  if p = pl  

¢ ~ t  (p) = execute  if p = P2 
> 
• in i_nex tx  i f p  = ps 
( 

A~t( t )  = cond_ev if t = t l  

out_lambda if t = t2 

where, for abuse of notat ion,  A S  = A S . n a m e  and n e x t x  = 
of t . target .name.  

As they  are profusely used in next  section, we also define 
AG as the  ac t iv i ty  diagram, L s t v e r t e x  P the  set of labels 
of s ta te  vert ices in it, L s t v e r t e x  P = {ini_target,  Vtarget  E 
AG. t rans i t i ons - -~  t a rge t . name}  and Lev p as the  set of 
events in the  system, Lev P ---- {e_evx, Vevx E E v }  U 
{ack_evx, Vevx E E v } .  

3.  T R A N S L A T I N G  A C T I V I T Y  D I A G R A M  

E L E M E N T S  
The  following subsections are devoted to t rans la te  each 

d iagram element  into an LGSPN;  the  composi t ion of these 
nets (section 4) results in a s tochast ic  Pet r i  net  system tha t  
will be used to obta in  performance  parameters  for the  mod-  
elled element.  

3.1 Action states 
An action s ta te  is ' a  shor thand for a s ta te  wi th  an en- 

t ry  act ion and at least one outgoing t rans i t ion  involving the  
implicit  event  of complet ing the  ent ry  act ion '  ([26], section 
3.85). According to this definition and the  t rans la t ion  of 
simple states in SMs [23] we should interpret  the  act ion 
a tomic and therefore represent  it by an immedia te  transi-  
t ion wi th in  the  L G S P N  corresponding to the  state.  

However,  for the  sake of an easier per formance  modell ing,  
we will allow here t imed  actions (i.e., actions wi th  a signif- 
icant durat ion) .  To do so, we will dist inguish t imed  from 
non- t imed outgoing transi t ions.  As explained in section 2, 
annota t ions  are a t tached  to t ransi t ions in order to allow the  
ass ignment  of different act ion durat ions  depending  on the  
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Translating an Activity Diagram into an L ~  T 
~ i o n  in which th . . . . .  lation p ...... for th . . . . .  :~tia~e which ] [Take an el ..... ]. _ ~ _ e n t s  left in the AD] 

is expressed in formal terms. ( from the AD J ~ - - - ~  

[action/subactivity/call state i [join/merge pseudostate, final state [ 
°r ~ u ~ v ~ ~ t  symb°l] / 

I[T~Tab~rolmn tilt 2g~ ~gel:~l~s~ iOnn~ ) [ T ~fr; t~ ~2ef~ Pe I etl ~l;s~:i° n : ] < ~ 1  / 

l{Sect on ., l{soctioo.,I " Y \  / 
I[(acTcr~rrd::l~t~g~r:~i:rn6)-~ [ aBc~rdd:bn:st~'fi'~r~et6 ] [(acTS:rn~li:t;tt°h~g~r:~i:rn6) 3 I I ~ /  

..... ~ ~ / ~ f l ~  . ~ _  ~[more.. ~ [elements 
~rU:g~s: ~ogn s 1 eft ] ~ n  o . . . . . . . .  itions left] / [ . . . . . . . . . .  itions left]~ "~self-l° °~ ~]nsiti°ns ) I left] 

. I {Section 3} ~ ~ {Section 3} / l 

[ Comp . . . . . .  iquesubnet 1 [ / Comp . . . . . .  iquesubnet ~ / .  ~{Sect ion 4} 
[ for all the outgoing ..... itions~ ] [for all ~he self-~o~p .... itions ] / f Compose the LGSPN 

-- ~ ~  / l for the whole AD 

F i g u r e  3: T h e  w h o l e  t r a n s l a t i o n  m e t h o d  fo r  a n  A D  

te rmina t ion  condit ion (note that ,  in ADs, outgoing transi-  
tions from action states model  decision branching).  A t imed 
t ransi t ion in an AD will entail  the  inclusion of a t imed tran- 
sition (with a rate  associated in fnnction of the  performance 
annota t ion)  in the result ing LGSPN.  A non- t imed t ransi t ion 
will result  in an immedia te  t ransi t ion in the L G S P N  model.  

Transla t ing an action s ta te  into L G S P N  formalism takes 
the three steps expressed in section 2.2. Given an action 
s ta te  A S  let q be the  number  of outgoing t imed t ransi t ions 
OTi of the  s ta te  (which do not end in a join pseudostate) ,  q' 
the  number  of outgoing non- t imed t ransi t ions ONj (which 
do not end in a join pseudostate) ,  r the  number  of outgoing 
t imed transi t ions OTJm tha t  end in a join pseudostate ,  r ~ 
the  number  of outgoing non- t imed transi t ions ONJ~ tha t  
end in a join pseudostate ,  s the number  of self-loop t imed 
transi t ions STk and s ' the  number  of self-loop non- t imed 
transi t ions SNi. 

Then  for each outgoing or self-loop t ransi t ion t, we have 
an L G S P N  £ $ ~ s  : S t A t ( a s t e R ,  AS) as shown in figure 4, 
cases 1.a-l.f. This  results in a set of q + q' + r + r '  + s + s '  
L G S P N  models tha t  need to be combined to get a model  of 
the s ta te  AS,  £SAS = (Sas, g, as, Aas). 

Firs t ly  we must  compose the  submodels  of the t ransi t ions 
of the same type, using the  superposi t ion operators  defined 
in Appendix  A and the following equations:  

i = l , . . . , q  

c s ~  = I I c s ~  ~ 
L s t v e r t e x  P 

k=l,...,s 
c s ~  ; II c s ~  ~ 

i n i_AS  

m=l,...,T 
£ 8  ors = As I I c s %  J~ 

in i_AS  

j = l , . . . , q  I 
£ 8  oN as = I I c s ~  " j  

L s t v e r t e x  P 

l = ~ . . . , s  t 

i n i - A S , o u t - A  

n = l , . . . , r  I 
£ S oN: ON: 

i n i_AS  

Again composing the subsystems jus t  shown, the  L G S P N  

model  £SAs  is now defined by: 

i n i - A S  in i_AS  L s t v e r t e x P  

II c s ~ J ) I I  c s ~  N: 
i n i - A S  in i_AS  

Final ly we must  remember  tha t  UML lets any kind of 
act ion to be executed inside an action state.  T h a t  means 
we might  find a Cal lAct ion or a SendAct ion there. However, 
UML syntax provides two special elements for this type  of 
states: call s tates and signal sending icons. We suggest their  
use, but  if an act ion s ta te  is used instead, then we should 
apply the  t rans la t ion me thod  described for the equivalent  
element  (call s ta te  or signal sending control icon). 

3,2 Subactivity states 
A subact iv i ty  s ta te  always invokes a nested AD. Its out- 

going t ransi t ions do not have t ime annota t ions  at tached,  as 
the  dura t ion  act iv i ty  can be determined t rans la t ing the  AD 
and composing the whole system (that  will be seen later  in 
this paper).  

Transla t ing a subact iv i ty  s ta te  into the L G S P N  formalism 
takes those three steps pointed out  in section 2.2. Notice 
tha t  there is an addi t ional  L G S P N  tha t  corresponds with 
the ent ry  to the state,  called basic. 

Then,  given a subact iv i ty  s ta te  S S  let q be the number  of 
outgoing t ransi t ions Oi of the s ta te  (which do not  end in a 
join pseudostate) ,  r the  number  of outgoing t ransi t ions OJk 
tha t  end in a join pseudostate ,  and s the number  of self-loop 
t ransi t ions Sj .  Also let AG' be the nested ac t iv i ty  d iagram 
and top the  name of the  first e lement  of AG ~, top = AG'.top. 

According to the t ransla t ions  shown in figure 4, cases 
2.a-2.d, we have a basic L S G P N  £$sBs = ~tSBss,wss,°{'B A~S) 
and one L G S P N  for each outgoing or self-loop t ransi t ion 
t, £Stss = S t ( ss, g'~s, ASs). Therefore,  we have q + r + s + 1 
L G S P N  models tha t  need to be combined to get a model  of 
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F i g u r e  4: A c t i o n ,  S u b a c t i v i t y  a n d  C a l l  S t a t e s  t o  L G S P N  

the  s tate  SS ,  £ S s s  = (Ss s , g ,  ss ,  Ass). The  L G S P N s  corre- 
sponding  to each set  of  kind of  trans i t ions  are now obta ined  
by superposi t ion:  

c s ~ =  II cs~°~ c s ~  ~ =  I I c s ~  ~ 
L s t v e r ~ e ~ z  P , e n d _ A G  e n d - A G  

j=~ . . . . .  

~sA = c s ~  
e n d - A G , o u t _ A , i n i - S S  

A n d  the  final L G S P N  mode l  £,Sss for the subac t iv i ty  
s ta te  is now defined by: 

L s s ~ = ( ( ~ s ~  ~ I I ~ s A ) I I  z s ~ ) I I  L s ~  
e n d _ A G  e n d - A G  i n i _ S S  

3 . 3  C a l l  s t a t e s  
Call  s ta tes  are a part icular case of  ac t ion  s tates  in which  

its  assoc iated  entry  act ion is a Cal lAct ion ,  so trans lat ion  
of  these  e lements  is rather similar. It must  be noted  that  
w h e n  a Ca l lAct ion  is executed  a set  of  Cal lEvents  m a y  be  
generated.  For the  sake of  s implicity,  we assume that  at 
most  one event  is generated,  but  def init ion can be  ex tended  
adding  new places  in the L G S P N  to consider that  poss ib i l i ty  
as well.  

Bes ides ,  the  Ca l lAct ion  may  be synchronous  or not  de- 
pend ing  on the value  of  its a t tr ibute  isAsynchronous, where  
synchronous means  that  the  act ion wil l  not  be  comple ted  
unti l  the  event  eventua l ly  generated  by the  act ion is con- 
sumed  by the  receiver. In that  case, we need a new place 
and trans i t ion  in the  corresponding  L G S P N  to mode l  the  
synchronizat ion  (see figure 4, cases  3.a, 3.c and 3.e). 

qb trans la te  a call  s tate ,  s teps  to  fol low are s imilar to  
those  descr ibed in sect ion  2.2. Given  a call s ta te  CS,  

• If verifies S .en t ry . I sAsynchronous  = fa l se  (i.e., its 
assoc ia ted  Ca l lAct ion  is a synchronous  call) we define 
u as the  number  of  ou tgo ing  trans i t ions  OSi of the  
s tate  (which do not  end in a join pseudos ta te ) ,  v the  
number  of  outgo ing  trans i t ions  OJSk that  end in a jo in  
p se u d o s ta te  and w the number  of  self - loop trans i t ions  
SSm. 

• • If  verifies S .en t ry . I sAsynchronous  = t rue  (i.e., its as- 
soc ia ted  Ca l lAct ion  is an asynchronous  call) we  define 
u' as the number  of  outgo ing  trans i t ions  OAj of the 
s tate  (which do not  end in a jo in  pseudos ta te ) ,  v t the  
number  of  outgo ing  trans i t ions  OJAz tha t  end in a jo in  
pseudos ta te ,  and w' the  number  of  self - loop trans i t ions  
SAm. 

Also  let evx be an event  generated  by the  call  act ion,  
evx = S . e n t r y . o p e r a t i o n ~ o c c u r r e n c e .  Consider ing  this,  
we have one L G S P N  for each outgo ing  or self- loop transi-  
t ion  t, £,9~cs = S t ( cs ,  COs, Arcs), as shown in figure 4, cases 
3.a-3.f.  Therefore,  we have either u + v + w or u' + v' + w' 
L G S P N  mode l s  that  need to be  combined  to get  a mode l  of  
the  s ta te  CS,  £ 8 c s  = (Scs, g'cs,  Acs). Th e  L G S P N s  corre- 
sponding  to each set  of  kind of  trans i t ions  are now obta ined  
by superposi t ion:  

i=l,...,u j=l,...,u t 
~os = OAj 

~cs I I cs~°~ ~ ~s~°2 = I I LScs 
L s t v e r t e x  P , L e v  P L s t v e r t e x  P , L e v  P 

k=l,. . . ,v l = l , . . . , v  t 
£Sojs = oJAz cs I I cs~°f ~ ~ s ~  A= I I CSc~ 

i n i _ O S , L e v  P i n i _ C S , L e v  P 
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rn=l,...,w ~ : l ~ . . . Q v  / 
£ $ S S  £8SS~n £ $ S A  £ $ S A n  

ini_CS,Lev P ini_CS,Lev P 

The final LGSPN for the state £$cs is defined by one 
of the two following equations, depending on whether the 
action was synchronous (a) or asynchronous (b): 

= £ s o s  ~ oJs £Scs ( C S g  II cs , I I £ $ ~  (a) 
ini_CS,Lev P ini_CS,Lev P 

~- £ s O A  ~ £$OJA 

ini_OS,Lev P ini_CS,Lev P 

3.4 Decisions 
Decisions are preprocessed before the AD translation, as it 

will be mentioned in section 4.1.1. They are substituted by 
equivalent outgoing transitions on action states (as shown in 
figure 5), preserving the properties inherent in performance 
annotations. Therefore, they do not have to be translated. 
Note that  performance annotations in figure 5 do not strictly 
follow the UML Profile [25], in order to obtain a more com- 
pact notation (otherwise, the figure would be rather over- 
loaded). 

n ingoing transitions 

{immediate] 

[cond I d / 

[condom ] 

{immediate} 

IcondaL,] ~ [  c o n d L ' ]  [cond ~ ,  ] 
• me a a e ~ . . . , . . ~ a l n o  I ,m  d, t t LM,} 

{immediate } 
m outgoing transitions 

. ingolng transitions 

2 
¢ond 0~ ^ cond 

l annet H} 

i - ~  } f~'l ¢ondj M ] 

¢ondj M ~ oondkA ] 
{immediate} 

[cond o~ ̂  cond {.21 
immediate} 

outgoinl Iransltions 

Figure 5: Decision to  L G S P N  ( P r e - t r a n s f o r m a t i o n )  

3.5 Merges 
Merges are used to reunify control flow, separated in diver- 

gent branches by decisions (or outgoing transitions of states 
labelled with guards). Often they are just a notational con- 
vention, as reunification may be modelled as ingoing transi- 
tions of a state. 

Translation of a merge pseudostate M depends on the 
kind of target element of its outgoing transition. Figure 6 
(cases 5.a and 5.b) shows the direct translation of the 
model, £$M , according to the condition expressed below. 

(a) £$M = £ 8 ~  ¢==~ (PS.outgoing.target 
Pseudostate V PS.outgoing.target.kind ~ join) (to join) 

(b) £$M = ~ 3 ~  ¢==~ (PS.outgoing.target C 
Pseudostate A PS.outgoing.target.kind = join) (not to 
join) 

3.6 Concurrency support items 
UML provides two elements to model concurrency in an 

AD: forks and joins. It is well known that Activity Dia- 

~Itdo_fork p 2 1 i a i _ n e x t x  pZlini next× 

l (4.b) r o t k  - 

I !  ........ : ] 
p l l i n i_M ~ p l l in i_FS 

tlldo_merge 
t2ld°--nex~× ~ tllending 

As mot a joan pseudostate g.a Final State 

pllini_SR ~~391111p21e_evx ~0 pllini_SS 
p21e evx tll£eceipt ~ tl~sending 

O £11receipt tllsending p21e_evx 
........... join ~ ~i22~252 ....... join 

ni_nextx 

(7.el Signal recei 17.b) Signal receip' 7.oi Signal sendin 7.d) Signal sendin 
Target vertex iJ Target vertex is a Target veEtex is TaEget vertex is a 

nor a Join Join peeudoetate not . joan join peeudoltate 

Figure 6: Fork, Join, Merge, Final State, Signal 

Sending and Signal Receipt to LGSPN 

grams were born as a mixture of characteristics from three 
different sources: the event diagram of Odell, SDL and Petri 
nets. Forks and joins seem to have been directly inherited 
from the latter (although there was already some concur- 
rency support in Odell's event diagrams). Translation into 
LGSPN models is quite simple in both cases. 
• Given a join pseudostate J ,  it is translated into the la- 

belled system £ $ j  , shown in figure 6, case 4.c. 
To translate forks, three steps must be followed: 
Given a fork pseudostate F let q be the number of its 

outgoing transitions O~. Then, according to the transla- 
tions shown in figure 6, we have a basic LSGPN £$F  B = 

B B (SF, OF, A~) (case 4.a in the figure) and one LGSPN (case 
4.b) for each outgoing transition t, £S~  = (SF,t Cg,t AF).t 
Therefore, we have q + 1 LGSPN models that  need to 
be combined to get a model of the pseudostate, £$F  = 
(SF,¢F,AF).  The LGSPNs corresponding to each set of 
kind of transitions are now obtained by superposition: 

i=l,...,q 
c s ~  ° = I I c s ~  °' 

do-fork,Lstvertex P 

And the final LGSPN £$F is composed following the 
expression: 

L S F = C S ~  f l CS~ ° 
do_fork 

3.7 Initial and final states 
Initial pseudostates and final states are elements inherited 

from UML state machines semantics. However, unlike it 
happened on UML SMs [6], the initial pseudostate is not 
translated into an LGSPN model when translating an AD, 
as no action can be attached to its outgoing transition. On 
the other hand, final states are translated, but the resulting 
LGSPN is different from that  shown in [6]. 

Given a final state FS,  the LGSPN model £SFS = 
(SFs, ¢FS, AFS) equivalent to the state is defined according 
to the translation shown in figure 6, case 6.a. 
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3.8 Signal sending and signal receipt 
Signal sending and signal receipt symbols are control 

icons. T h a t  means they  are not  really necessary, but  are 
used as a nota t ional  convention to specify common model-  
ing mat ters .  In fact, they  seem to be the  clearest  evidence 
of the  SDL nota t ion  inheri tance.  In our specific case, these 
symbols are the  only mechanisms we allow to model  the pro- 
cessing of external  events, and are equivalent  to labelling 
the  outgoing t ransi t ion of a s ta te  wi th  a SendAct ion corre- 
sponding to the signal as an effect or wi th  the name of the  
SignalEvent  expected as the  t r igger  event, respectively. 

As these symbols are control  icons, there  is not  a meta-  
class corresponding to this elements in the  UML metamodel .  
So we assume tha t  before t rans la t ing  the  d iagram a unique 
identif icator is assigned to each one of these elements,  so 
when we say t.target.name, where t is a incoming transi-  
t ion of the  control  icon, we are refering to this identificator 
(instead of the  name of the real ta rget  S ta teVer tex  according 
to the  metamodel ) .  

Given a signal sending/ rece ip t  symbol  CS, the  t rans la t ion 
of the  symbol  depends  on whether  this ta rget  element  is a 
join pseudosta te  or not: 

If the symbol  is a signal sending, then  let SIGS be 
its pre-assigned identificator.  Its t rans la t ion into an 
L G S P N  model  LSsics is shown in figure 6, cases 7.c- 
7.d. 

If the  symbol  is a signal receipt,  then  let SIGR be 
its pre-assigned identificator.  Its t rans la t ion into an 
L G S P N  model /2$sicR is shown in figure 6, cases 7.a- 
7.b. 

It  must  be noted that ,  as far as signal sendings is con- 
cerned, we have assumed tha t  at most  one event  is gener- 
a ted for simplicity, bu t  definition can be extended adding 
new places in the  L G S P N  to consider tha t  possibili ty as 
well. 

3.9 Constructions not considered yet 
Some elements from ADs are not  considered as relevant 

for per formance  evaluat ion in the scope of our work; thus 
they  are not  t rans la ted  into L G S P N  models.  These  elements  
are: 

Swimlanes, which are mechanisms to organize visually 
the s tates  wi th in  the  diagram, lack a well-defined se- 
mantics.  In our interpreta t ion,  we did not  assign them 
any par t icular  role; and therefore they  are not  t rans-  
lated. Anyway, we are aware tha t  they  could be used 
to model  where the  processes are executed,  providing 
then  a useful per formance  information.  This  possibil- 
ity should be evalua ted  as soon as we el iminate  our 
' infinite resource'  assumption.  

Action-Object Flow relationships, as they  do not pro- 
vide any addi t ional  concre te  informat ion about  the  be- 
havior of the  system. 

Deferrable events as, according t o  our in terpre ta t ion  
(see section 2), any event  is deferred in an AD (except, 
obviously, SignalEvents  when a signal receipt  symbol  
is found). 

4. THE SYSTEM TRANSLATION PRO- 
CESS 

In the previous section we have presented our me thod  to 
t rans la te  every AD element  into L G S P N  models.  Here, we 
will focus on the  whole system t rans la t ion process, present- 
ing an overview of the steps to follow and al locat ing the  ideas 
a l ready presented in their  own t iming.  The  process includes 
the complete  t rans la t ion me thod  for ADs and the way to 
in tegrate  the  result ing L G S P N  wi th  the  ones obta ined from 
the  t rans la t ion  of U M L  SMs and SDs [6]. 

4.1 Translating activity diagrams into LGSPN 
As an initial premise we assume tha t  every AD in the  

system descript ion has exact ly  one initial s ta te  plus, at least, 
one final s ta te  and another  s ta te  from one of the  accepted 
types  (action, subact iv i ty  or call s tate) .  The  t rans la t ion  
of an AD can then  be divided in three phases, which are 
presented in the  subsequent  paragraphs.  

4.1.1 Pre-transformations 
Before t rans la t ing  the  AD into an L G S P N  model,  we need 

to apply some simplifications to the  d iagram in order  to 
proper ly  use the t ransla t ions  given in section 3. These sim- 
plifications are merely  syntact ical  so the  system behaviour  
is not  altered. Most  relevant ones are: 

• Suppression of decisions. F igure  5 shows a part icu-  
lar case of this kind of t ransformat ion.  New decisions 
could be found in any branch of the  chaining tree, but  
the  figure has been simplified for the  sake of simplicity. 

• Suppression of merges / forks / joins chaining, bring- 
ing them together  into a unique merge / fork / join 
pseudosta te  (this process is tr ivial) .  

• Deduct ing  and making  explici t  the  implici t  control  
flow in act ion-object  flow relationships,  where aplica- 
ble. 

• Avoidance  of bad design cases (e.g., when the  ta rge t  
of a fork pseudosta te  is a join pseudostate) .  

4.1.2 Translation process 
Once pre- t ransformat ions  are applied we can proceed to 

t rans la te  the  d iagram into an L G S P N  model.  This  is done 
following three  steps: 

s t e p  1 Transla t ion of each d iagram element,  as shown in 
section 2. 

s t e p  2 Superposi t ion of the  L G S P N s  corresponding to the  
whole set of instances of each AD element  type: 

A S E A c t i o n S t a t e s  

L s t v e r t e x  P 

S S E S u b a c t i v i t y S t a t e s  

c s r g  ~= [I csss 
L s t v e r t e w  P 

C S E C a l l S t a t e s  

cs~ ~= II £8~s 
L s t v e r t e x  P , L e v  P 

S I G S @ S i g n a l S e n d i n g s  

csi~ ~°= [I cssiG~ 
L s t v e r t e x P , L e v  P 

SIGRC S i g n a l R e c e i p t s  

c s ~  ~ =  II CS~zGR 
L s t v e r t e w  P , L e v  P 
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M E M e r g e s  F E F o r k s  

csF& ~= II CSM tSAR2 = II cs~ 
L s t v e r t e x  P L s t v e r t e w P  

J E J o i n s  FS  E F i n a l S  t a t e s  

csZg ~ =  II cs~ c s ~ =  II c s ~  
L s t v e r t e x  P e n d _ A G  

s tep  3 Working out the LGSPN for the diagram itself by 
superposition of the LGSPNs obtained in the last step: 

csac = (((((((~s~ ~ II c s ~  ~) 
L s t v e r t e x P , L e v  P 

I I c&%~D II c s ;g  ~) [I c s f : )  
L s t v e r t e x  P L s t v e r t e x  P L s t v e r t e x  P 

L s t v e r t e x  P L s t v e r t e x  P , L e v  P 

L s t v e r t e x  P , e n d _ A G  L s t v e r t e x  P 

It must be noted that the compositional approach does 
not deal with recursive invocations between activities. E.g., 
let AG1 be an activity graph where SS is a subactiv- 
ity state in it, SS E AGl.transitions.source, and let AG2 
be the activity graph that the state invokes, AG2 = 
SS.submachine. Also let SS ~ be a subactivity state in AG2, 
SS~ E AG~.transitions.source, which invokes AGi ,  AG1 = 
SS(submachine. For this kind of situations, we would need 
coloured Petri nets (with an unbounded number of colours), 
in order to identify different invocations. Note that the 
method to combine different activity diagrams (as well as 
other diagram types) is depicted in section 4.2. 

4.1 .3  Pos t -op t imiza t ions  

Contrasting with pre-transformations, which are manda- 
tory, post-optimizations are optional. Their objective is just 
to eliminate some spare places and transitions in the result- 
ing LGSPN so as to make it more compact without altering 
its semantics. One example of these kind of transformations 
would be, in subnets of the LGSPN corresponding to out- 
going timed transitions of action states £ S ~  r , the removal 
of the superfluous immediate transitions (and their output 
place) in case of no conflict. 

4.2 Composing the whole system 
As it has been stated before, in terms of performance eval- 

uation we use UML ADs exclusively to describe doActivities 
in SCs or activities inside subactivity states of others ADs. 
Hence, the merging of nets corresponding to SCs and ADs 
will be dealt with first. 

In case an activity (modelled with an AD) is invoked from 
different states in (one or several) SCs/ADs (by means of 
doActivities or subactivity states, respectively), we must 
replicate the LGSPN of the corresponding AD (one AD per 
invocation). Otherwise, undesirable situations could hap- 
pen which would degrade the performance evaluation results 
(the resulting Markov chain does not capture properly the 
system behaviour). A different solution for this issue would 
be using coloured Petri nets (applying a different colour for 
each doActivity/subactivity invocation). Obviously this im- 
plies that the activities invocation graph must be aeyclic; 
hence neither support for Knuth 's  coroutines nor recursion 
are offered, as already commented in section 4.1.2. 

Let us suppose the replication process has al- 
ready been executed. Let d be the number of ADs 
used at system description and Linterfaces P = 
{Lin i - topP,LevP,Lend_AGP},  where Lini_top P is the 
set of initial places of the LGSPNs corresponding to the 
ADs and Lcnd_AG P the set of final places of those nets. 
Now, we can merge the referred LGSPNs by superposition 
(of places): 

A G C A c t i v i t y D i a g r a m s  

£8~d = I I  £8AC 
L i n t e r f a c e s  P 

Now let £8~c be the LGSPN corresponding to the transla- 
tion of the set of SCs in the model. £8 '~  was previously ob- 
tained by composition (superposition of places) of the nets 
obtained for each SC and subsequent removal of sink ac- 
knowledge places (see [6]). 

Then let T_act be the set of transitions in £8'src labelled 
activi ty [6] which represent activities that are described with 
activity diagrams. £ 8 ~  will be the result of that labelled 
system with the removal of this set of transitions, £3~c = 
fl:8rs~c \ T_act. Ingoing places for these transitions (labelled 
end_entry_A in £ 8 ~ )  will be now labelled ini_top, where 
top is the name of the first element of the activity diagram 
AG ~ that represents the activity, top = AG'.top.name. Simi- 
larly, outgoing places (labelled compl_A) will be now labelled 
e nd_A G ( 

Once done, we can merge the LGSPN systems £ 8 ~  and 
£8~d: 

£ 8  . . . .  d = £ 8 ~  I I £ 8 ~  
L i n t e r f a c e s  P 

The resulting net £Ssc-ad often represents the whole sys- 
tem behavior. However, this behavior can be constrained to 
obtain performance measures for a particular scenario (pat- 
tern of interaction). That  is done by merging £Ssc-ad and 
the LGSPN corresponding to a specific SD into a unique 
LGSPN £8 ,  mainly by synchronization (i.e., superposition 
of transitions). Paper [6] describes two approaches for doing 
an analogous operation, using the referred net £8sc instead 
of LSsc-ad. Nevertheless, both procedures are still directly 
applicable to the resulting LGSPN £ 8 s c - - a d .  

A sample case of the translation of a very simple system 
is illustrated in figure 7. The reader is encouraged to check 
out [18] to obtain a wider vision of our proposal under the 
prism of a more complex case study. Here we will focus on a 
small portion of the system modelled in that paper. The ex- 
ample is quite representative as it formalizes the POP3 pro- 
tocol, a well-known instance of the client-server paradigm in 
which nodes perform time-relevant internal processing while 
there is some intercommunication between them. 

More concretely, we built the model to evaluate the be- 
haviour of a mail client using the referred protocol. Thus, we 
used three SCs (to respectively model the client, server and 
user dynamics), one SD (to model the use case we wanted 
to analyze) and one AD (to model the internal processing 
in the server for the authentication phase), which is shown 
in Figure 7. Additionally, we include there the LGSPN ob- 
tained by applying the proposal described in this paper to 
this last diagram. 

The referred AD represents how the login (authentication) 
process is performed at the server side. The server waits for 
a username from the client, and then for a password; if both 

33 



match up with those held in the local machine, the mail- 
drop is locked and the server ends up the authentication 
phase. On the other hand, if anything fails it returns a er- 
ror status message and returns to the initial state. Note 
that we estimated some (hypothetical) event probabilities 
and task durations and annotated them as tagged values. 
Those annotations will allow us to perform some quantita- 
tive (performance) analysis over the model. 

It must be remarked that the AD is just a part of the 
whole system description. That  results in the lack of tokens 
in the initial marking of the net in Figure 7. The reader is 
refered again to the paper [18] to understand how the Petri 
net for the whole system is composed. 

+0.8~ 

m . . . . . . . .  

F i g u r e  7 : P O P 3  P r o t o c o l  (Server  s ide):  A u t h e n t i -  

c a t i o n  

5. SOFTWARE P E R F O R M A N C E  TOOL 
To accomplish our objective of successfully integrating 

techniques of performance evaluation in the software engi- 
neering process, an special effort in the automatization of 
the method is required. To do so, we have developed a 
module in Java r that translates the SC as proposed in [21] 
and the AD as proposed in this work. The module has been 
incorporated to the ArgoUML CASE tool [4]: The input 
diagrams are provided in the XMI [14] format, while the 
output produces a LGSPN in the file format [8, 13]. 

The module also implements the composition of the re- 
sulting LGSPN models for the SCs and ADs as explained 
this work. Then, the resulting LGSPN, that represents a 
performance model for the modeled system, is directly pro- 
cessable by the GreatSPN tool [13] and it has full capability 
to make quantitative analysis and obtain performance rates. 

Although ArgoUML does not allow a full exploitation of 
all the expressivity in the SC and AD that we have dealt 
with (since it does not support every model element), our 
module provides full capability to translate them. There- 
fore, those model elements not contemplated by ArgoUML 
should be written by the modeller directly in the XMI file 
(or simply using a different front-end CASE tool). Note 

that this limitation is introduced by the current state of the 
ArgoUML tool. 

Finally, it must be noted that an special effort has been 
made to obtain highly-legible GreatSPN nets, avoiding the 
superimposition of places and transitions in the generated 
GreatSPN files. 

6. RELATED W O R K  
Although there are several works devoted to obtain formal 

models from the UML SC [16, 15, 29] or the UML SD [31, 
7, 3], some of them with performance evaluation purposes, 
the AD has not been studied yet so intensively. However, we 
would like to remark two significant works, which will be re- 
viewed below. The first one (Eshuis et al.) is concerned with 
semantical issues of the AD, while the second one (Petriu 
et al.) deals with usign ADs for performance evaluation on 
stochastic models. 

One of the main challenges in adapting UML diagrams to 
performance evaluation purposes is choosing an appropriate 
formal semantics. I.e., neither too restrictive (allowing the 
modeler a good degree of expressivity) nor too permissive. 
After all, UML's informal semantics should be respected; 
among other reasons, because communication fluency be- 
tween modelers is a very basic, strong SPE principle. 

UML 1.5 defines AD semantics in terms of SCs. That  is 
subject to change in UML 2.0, which will define a (entirely 
new) token-based semantics. An interesting contribution to 
the semantics discussion can be found in [10]. Eshuis et al. 
had previously defined a step-based, STATEMATE-Iike, se- 
mantics [ii] for ADs. In the former cite, the authors discuss 
the (un)suitability of Petri nets for workflow modelling, in 
contrast to their formalized ADs. The reasoning is well jus- 
tified under the light of the application field, as these may be 
more appropriate for modelling reactive systems (i.e., depen- 
dent on the environment) as common workflow processes. 

Here we define AD semantics in terms of (labelled) 
GSPNs. We do not strive for reactive systems since, for 
now, we strictly utilize ADs for modelling processes not de- 
pendent on external events, as the UML specification [26] 
suggests. Eshuis semantics are aimed to business mod- 
elling. Meanwhile, we apply ADs to describe method in- 
vocations internals, especially when complex concurrent be- 
havior must be depicted. Needless to say, this is one of the 
basic roles defined by OMG for the AD. 

Due to the nature of this application, we are (theoreti- 
cally speaking) closer to OMG's perspective, when defining 
a token-game semantics in the UML 2.0 final draft, than to 
Eshuis step-based semantics. That is not very exact either, 
as there are rather profound revisions in the AD semantics 
(e.g., it seems that outgoing transitions from action states 
will have now a fork-like semantics, instead of conditional 
branching-like). Moreover, our interpretation is stochastic, 
not exactly non-deterministic as in plain Petri nets, so as 
to allow performance evaluation. But we share a focus on 
the modelling of active systems, while we allow complex, 
parallel, and even unsafe, behaviors. 

An interesting work has been developed in [27], where ac- 
tivity diagrams are translated into layered queue networks 
(LQN) using a graph grammar based transformation. A 
graph grammar is a set of production rules that generates 
a language of terminal graphs and produces non terminal 
graphs as intermediate results. A production rule is applied 
to the abstractions that represent the activity diagram, then 
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the activity diagram graph is parsed to check its correction 
and to divide it into subgraphs that correspond to the LQN 
elements. As it can be seen the approach to formalize activ- 
ity diagrams is absolutely different from ours, which is based 
in the composition of the submodels obtained for each ab- 
straction. 

Concerning our tool, it is difficult to make a reasonable 
comparison because to our knowledge there exist six tools [5, 
2, 19, 27, 12, 17] for performance evaluation based on UML, 
but only the last one uses stochastic Petri nets as perfor- 
mance model. Besides, their model semantics and sup- 
ported diagrams strongly differ from our approach. DSP- 
NExpress2000 [17], syntactically speaking, seems to allow 
only the modelling of simple SCs. In SimML [5], simula- 
tion queuing networks models [24] for performance evalua- 
tion are obtained from UML class diagram and SD, while 
in the PERMABASE project [2] models for simulation are 
obtained from UML SD and class and deployment diagrams. 
Finally, Gilmore et al. [12] employ class and collaboration di- 
agrams to obtain analyzable stochastic process algebra mod- 
els (namely PEPA models). It is interesting to note that the 
supporting software architecture for Gilmore's proposal in- 
cludes model checking facilities. 

7. CONCLUSIONS 
The main contributions of this paper can be summarized 

as follows: 

• We have incorporated the AD into our SPE approach 
with an specific role: modelling the doActivity con- 
cept of the SCs. We have found that under this role, 
the AD is a tool to gather performance requirements: 
routing rates and actions duration. The annotations 
are proposed according to the UML profile [25]. 

• We have given a translation of the AD (that models 
a doActivity) into a stochastic Petri net model. In 
this way, it can be composed with any other stochastic 
Petri net model that represents a SC that uses the 
corresponding doActivity, thus gaining an analizable 
model for the system. 

• A formal semantics for the AD is achieved in terms 
of stochastic Petri nets that allows to check logical 
properties as well as to compute performance indices. 
Obviously, this formal semantics represents an inter- 
pretation of the "informally" defined concepts of the 
UML AD. Our interpretation is focused on the ba- 
sis that the AD is meant for the description of the 
doActivities in a SC. Moreover, we have recalled an 
example [18] in the client-server paradigm where the 
presented approach was successfnlly applied. 

• A Java r module has been incorporated to the Ar- 
goUML CASE tool. It allows to translate all the ele- 
ments in UML SC and ADs notation as proposed by 
our approach. Performance annotations can be in- 
troduced to produce a LGSPN model, representing 
the system, that can be analyzed by the GreatSPN 
tool [13], therefore it is possible to obtain perfornmnce 
measures in the steady or transient state. The pro- 
cessing of XMI files as input by our module ensures 
compliance with current standards. 

As future work we are working on the following open is- 
sues: 

• With respect to UML ADs, conditional forks and more 
complex external event processing support, especially 
important to solve the problem of 'uninterruptable '  
activities due to the use of action states. 

• Extension of the Java r module to support UCs and 
SDs in order to increase the expressivity at system 
description. 

APPENDIX 

A. FORMAL DEFINITION OF COMPOSI- 
TION OF LGSPNS 

A.O.O.1 Place  and  transition superposi t ion  o f  two 
ordinary LGSPNs . .  

Given two LGSPN ordinary systems P-.Si = ($1, ¢1, )~1) 
and £$2 = ($2, ~ ,  A2), the LGSPN ordinary system E.S = 
(s,¢,~): 

£ S  = £$1 I I £$2 
LT,Lp 

resulting from the composition over the sets of (no 7-) labels 
LT and Lp is defined exactly as in our previous works. We 
encourage the reader to check out any of the following refer- 
ences for further information: [6, 20]. Nonetheless, figure 1 
depicts informally the semantics of the superposition oper- 
ator (that should be sufficient for a basic comprehension). 

A.O.O.2 P lace  and  transit ion superposi t ion  and  sim- 
pli f ication o f  two ordinary LGSPNs . .  

Given two LGSPN ordinary systems /2S1 = (Sl,~bl, ,~1) 
and E.S2 = ($2, ~P2, A~), the LGSPN ordinary system F_.$ = 
(s,¢,~): 

G 
£ S  = £$1 £$2 

LT,Lp 

resulting from the composition over the sets of (no 7-) labels 
LT and Lp is defined as follows. Let ET = LT A Ai(T1) A 
A2(T2) be the subset of LT comprising transition labels that 
are common to the two LGSPNs, and T f  T be the set of all 
transitions in £$1 that are labeled with a label in ET. Same 
definitions apply to/2S2. 

Then P, T, and the functions F E { I ( ) , O 0 , H 0 ,  H0,  
M ° ( ) , ¢ 0 ,  A()} are defined exactly as it was made for the 
previous operator (] ]), whereas function W 0 is equal to: 

8 

w ( t )  = 

wi (t) 
w~(t) 
w~(t~) + w~(t~) 
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if t E T1 \T1ET 
if t e T2\ T~ T 
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