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Abstract—Mobile ad hoc networks consist of nodes that are often
vulnerable to failure. As such, it is important to provide redundancy
in terms of providing multiple node-disjoint paths from a source to
a destination. We first propose a modified version of the popular
AODV protocol that allows us to discover multiple node-disjoint
paths from a source to a destination. We find that very few of such
paths can be found. Furthermore, as distances between sources and
destinations increase, bottlenecks inevitably occur and thus, the pos-
sibility of finding multiple paths is considerably reduced. We con-
clude that it is necessary to place what we call reliable nodes (in
terms of both being robust to failure and being secure) in the net-
work for efficient operations. We propose a deployment strategy
that determines the positions and the trajectories of these reliable
nodes such that we can achieve a framework for reliably routing in-
formation. We define a notion of a reliable path which is made up of
multiple segments, each of which either entirely consists of reliable
nodes, or contains a preset number of multiple paths between the
end points of the segment. We show that the probability of establish-
ing a reliable path between a random source and destination pair
increases considerably even with a low percentage of reliable nodes
when we control their positions and trajectories in accordance with
our algorithm.

I. introduction

Mobile ad hoc networks find application in many fields such as
military deployments, disaster rescue missions, electronic class-
rooms. In this paper, we primarily look at reliability in terms of
providing robustness to node failures in ad hoc networks. Node
failures may be intermittent, i.e., for short periods or for long
periods of time, and due to various reasons. First, since these
networks are likely to be deployed in wireless environments, the
communications between the ad hoc nodes will have to be via
a harsh fading channel. Thus, communications between nodes
would typically endure periods of intermittent failure and as a
consequence, packet losses. It is possible that certain nodes might
completely lose connectivity for temporary periods due to the
fading conditions. One way of overcoming this would be to use
sophisticated antenna systems or modulation methods. However,
many of the ad hoc nodes, if not most of them, would be con-
strained by size, processing and power limitations and thus, may
not possess such capabilities. Second, many of the ad hoc nodes
are power constrained. Due to battery drain, it is possible that
some of these nodes might not be able to function. Such an effect
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may result in a long term failure if a node's battery is completely
drained or if it is possible to re-charge the node's battery, the node
might not function for intermittent short periods. Third, nodes in
an ad hoc network are vulnerable to compromise. Compromises
are especially likely for unattended sensor nodes or handhelds
carried by pedestrians. A simple form of denial of service is to
simply cause node failures, either intermittent or long term.

Multipath routing is one way of improving the reliability of
the transmitted information. While multipath routing may be
used for various other reasons such as load-balancing, conges-
tion avoidance, lower frequency of route inquiries and to achieve
a lower overall routing overhead [1][2][3][4][5], our objective is
to primarily design a multipath routing framework for providing
enhanced robustness to node failures. If one could provide mul-
tiple paths from a source to a destination, one could envision the
transmission of redundant information on the various paths (by
the use of known techniques such as diversity encoding [6]) that
would help the receiver in reconstructing the transmitted infor-
mation even if a few of the paths were to fail. By multiple paths,
we imply multiple node-disjoint routes from a source node to a
destination node. Our first goal towards this is to design a routing
protocol that would allow us to find multiple node-disjoint paths
from a given source to a destination. Towards this, we make
modifications to the Ad Hoc Distance Vector Routing Protocol
(AODV) [7] which is one of the most popular ad hoc routing
protocols to facilitate the discovery, and consequently the use of
multiple node-disjoint paths.

We found that the number of node-disjoint paths from a source
to a destination is dependent on the node density in the ad hoc
network (as might be expected). Furthermore, we found that as
the distance between a source and its destination is increased, one
could find no more than a very limited number of paths between
them, even at moderate node densities (average node degree is
6.7). This observation lead us to believe that, one would require
at least a few of the ad hoc nodes to be more reliable. One could
envision that these nodes would be placed in moving vehicles
and could be less constrained in terms of size, processing and
power. They would be physically more secure and robust to
compromises. These nodes (typically much fewer in number
in comparison with the normal ad hoc nodes) could then, be
allowed to participate in routing along multiple routes between
the same source-destination pair. For the ease of notation let
us call these nodes R-nodes. The revised objective is then to
construct a sequence of reliable segments between the source
and the destination. Nodes that join two segments have to be
R-nodes. A segment is deemed reliable if it consists of either a
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preset number of paths between the two R-nodes that it connects
or if it is made up of R-nodes entirely. A concatenation of reliable
segments is called a reliable path. We describe the construction
of a reliable path in detail in Section V.

The next question that arises is: where should these R-nodes
be placed so that the probability of finding a reliable path be-
tween an arbitrary source and destination is acceptable? Initially,
we placed these R-nodes at random locations within the area of
interest. However, we found that this does not help in achiev-
ing an acceptable probability of finding a reliable path between
a source and a destination. Thus, we need a more intelligent way
of placing these R-nodes. Furthermore, as the nodes in the ad
hoc network are mobile, the R-nodes would have to adaptively
move so as to maintain these advantageous positions with respect
to the other nodes. We propose a methodology to control the tra-
jectory of an R-node based on information exchanged within a
local vicinity of the R-node. We find by simulations that placing
each R-node at positions defined by our algorithm (which is in
fact, a version of the randomized min-cut algorithm1 [8]) is a very
effective deployment strategy in terms of achieving a high prob-
ability that a reliable path is found between any arbitrary source
and destination.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the related work on multipath routing in ad
hoc networks. We describe our modified version of AODV (we
call it AODVM for AODV-Multipath) in Section III and describe
how it finds multiple node-disjoint paths from a given source to a
given destination. In Section IV we discuss the simulation exper-
iments performed with AODVM and discuss the observed results
in terms of performance. We describe the various strategies that
we consider for deploying the R-nodes and the motivation for
doing so in Section V. In Section VI we describe our simulation
results with a new experimental set up with an ad hoc network
that includes a small number of R-nodes and discuss the observed
results in terms of the performance of the various deployment
strategies. We present our conclusions in Section VII.

II. RelatedWork

Multipath routing has been well studied in wired [1][9][10]
and wireless [2][3][4][5][11] networks. Multipath routing in
MANETs has also received some attention recently. DSR [12]
and TORA [13] have the ability to find multiple paths. In DSR,
by using the information received from multiple route queries
which might traverse distinct paths, the destination can attempt
to construct multiple node-disjoint paths. However, due to its
inherent nature (as in AODV, described in the next section), DSR
can find only a small fraction of the possible node-disjoint paths
if used without any modifications. TORA builds and maintains
multiple loop free paths using Directed Acyclic Graph (DAG)
rooted at the destination; however, it does not find node-disjoint
paths.

Path disjointness has been studied in [2][3][5][11]. In [2], the
authors have analyzed the performance impacts of alternative
path routing for load balancing. Nasipuri et al.[3] studied the

1The details are provided in a later section.

effect of number of multiple paths and lengths of those paths on
routing performance using analytical models. Lee et al. [11]
proposed the Split Multipath Routing protocol (SMR), which
can find an alternate route that is maximally disjoint from the
shortest delay route from the source to the destination. All of
the above protocols are based on source routing. Distance vector
based multipath routing protocols are investigated in [4][9][14].
However, of these, AOMDV [4] is the only protocol that ensures
that the paths are edge-disjoint.

The multipath routing protocols described above, which are
based on source routing, allow the source node to compute mul-
tiple node or edge-disjoint paths. The source can do so from the
partial topology information that is made available by means of
multiple responses to a single route query. With distance vector
based protocols, the topology information that a node can ob-
tain is further limited. Thus, it would be difficult to construct
node-disjoint paths from a source to a destination. Link state
routing can be used to generate multiple node-disjoint paths but
the use of such protocols requires large overheads [15]. AODV
is a popular routing protocol that creates distance vector routing
tables on-demand and it requires a lower overhead as compared
with DSR [16]. Thus, we choose AODV as a candidate protocol
and make modifications to it, to facilitate the discovery of node-
disjoint paths from a source to a destination. Although there has
been prior work on modifying AODV to compute edge-disjoint
paths [4], to the best of our knowledge, our AODVM protocol is
the first modified version of AODV, that has the ability of finding
node-disjoint paths. Furthermore, our work is the first to study
the relationship between the number of node-disjoint paths that
can be found between a source and a destination and the density
of nodes in the network. Our observations lead us to conclude
that in the absence of any infrastructure it is highly improba-
ble that we can find a satisfactory number of node-disjoint paths
even at moderate densities, especially when the source and the
destination are far apart. Thus, we propose an infrastructure that
is facilitated by the deployment of reliable nodes (that we call
R-nodes), that can route on multiple paths, as described earlier.

Our work also investigates the effect of the location of R-nodes
on the performance in terms of computing multiple paths. We
propose a distributed protocol to control the trajectories of the R-
nodes such that a reliable routing framework could be provided.
In [17], a trajectory control algorithm was proposed for mobile
gateways in ad hoc networks. The objective of the trajectory con-
trol algorithm is to determine where the gateways are to be placed,
relative to the ad hoc group of nodes that the gateway serves such
that certain network performance metrics such as throughput was
maximized. Unlike in [17] wherein one would most likely place
the gateways in dense regions within the network, our objective
would be to place the R-nodes in sparser regions of the network
and control their trajectories so as to increase the probability of
establishing a reliable path (defined earlier) between two arbi-
trary nodes.
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Fig. 1. The RREQ propagation procedure in AODV

III. Ad-hoc On-demand Distance Vector Multipath
(AODVM) Routing

In order to facilitate the computation of multiple node-disjoint
paths from a source to the destination, we choose AODV as a
candidate protocol and make modifications to it to enable the
discovery of such paths. First, the choice of AODV is based
on prior studies [15] that show that on-demand routing proto-
cols consume lower overhead than pro-active routing protocols.
Second, as compared with DSR (which is the other popular on-
demand routing protocol), AODV avoids the high source routing
overhead.

A. AODV

We first briefly describe the AODV protocol. We omit most of
the details due to space limitations. A more detailed description
of AODV may be found in [7].

AODV combines the use of destination sequence numbers in
DSDV with an on-demand route discovery technique. If a source
needs a route to a destination, it invokes a network-wide flood
of a route request or RREQ message. In response, either the
destination or an intermediate node that knows a route to the
destination, sends a route reply or RREP message back to the
source along the path on which the RREQ message was received.
Intermediate nodes re-broadcast the RREQ message only if (a)
they do not know a route to the destination and (b) if they have
not already forwarded the particular RREQ message.

Once a route is established, it is used by the source to send
data. If a link fails, the node that detects the link failure (possibly
through feedback from the link layer), sends a route error (RERR)
message to the source, upon the receipt of which, the source re-
initiates a route search. Destination sequence numbers are tagged
onto all routing messages and are used to indicate the relative
freshness of the routing information.

Since duplicate RREQ messages are discarded by intermediate
nodes, it is probable that, some of the possible node-disjoint paths
to the destination, might never be traced during the query pro-
cess. In Fig. 1, the links indicated by the dashed lines are never
reported to the destination since the intermediate relay nodes dis-
card the RREQ messages received on these links. Even though
there are three possible node-disjoint paths from the source to the
destination, AODV can find only one of them.

B. AODV-Multipath (AODVM)

We propose modifications to the AODV protocol so as to en-
able the discovery of multiple node-disjoint paths from a source
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Fig. 2. (a) Structure of the each RREQ table entry in AODVM
(b) Structure of the each routing table entry in AODVM

to a destination. Instead of discarding the duplicate RREQ pack-
ets, intermediate nodes are required to record the information
contained in these packets in a table which we refer to as the
RREQ table. For each received copy of an RREQ message, the
receiving intermediate node records the source who generated
the RREQ, the destination for which the RREQ is intended, the
neighbor who transmitted the RREQ, and some additional infor-
mation (as shown in Fig. 2(a)) in the RREQ table. Furthermore,
intermediate relay nodes are precluded from sending an RREP
message directly to the source.

When the destination receives the first RREQ packet from one
of its neighbors, it updates its sequence number and generates
an RREP packet. The RREP packet contains an additional field
called ``last hop ID2'' to indicate the neighbor from which the
particular copy of RREQ packet was received. This RREP packet
is sent back to the source via the path traversed by the RREQ copy,
albeit in the reverse direction. When the destination receives
duplicate copies of the RREQ packet from other neighbors, it
updates its sequence number and generates RREP packets for
each of them. Like the first RREP packet, these RREP packets
also contain their respective last hop nodes' IDs.

When an intermediate node receives an RREP packet from
one of its neighbors, it deletes the entry corresponding to this
neighbor from its RREQ table and adds a routing entry to its
routing table (shown in Fig. 2(b)) to indicate the discovered route
to the originator of the RREP packet (the destination). The node,
then, identifies the neighbor in the RREQ table via which, the path
to the source is the shortest, and forwards the RREP message
to that neighbor. The entry corresponding to this neighbor is
then deleted from the RREQ table. In order to ensure that a
node does not participate in multiple paths, when nodes overhear
any node broadcasting an RREP message, they delete the entry
corresponding to the transmitting node from their RREQ tables.

When an intermediate node that receives an RREP message
cannot forward it further (its RREQ table is now empty), it gen-
erates an RDER or Route Discovery Error message and sends
that message to the neighbor that actually forwarded the RREP
to this node. The neighbor, upon receiving the RDER message
will now attempt to forward the RREPto a different neighbor who
can potentially forward it further towards the source. We limit
the number of RDERs that an RREP message can experience in
order to prevent the generation and exchange of a large number
of such packets3.

2We assume that the ID of a node is unique in the network and it can be the
node's IP address.

3In our simulation (to be described later) we set this limit to twice the lifetime
(TTL) of the RREP packet.
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We see that intermediate nodes make decisions on where to
forward the RREP messages (unlike in source routing) and the
destination, which is in fact the originator of these messages is
unaware as to how many of these RREPmessages that it generated
actually made it back to the source. Thus, it is necessary for the
source to confirm each received RREP message by means of
a Route Confirmation message (RRCM). The RRCM message
can, in fact, be piggybacked onto the first data packet sent on
the corresponding route and will also contain information with
regards to the hop count of the route, and the first and last hop
relays on that route.

As in theAODV protocol, we use sequence numbers to prevent
loops. When a source node initiates an RREQ, it increases its se-
quence number seqsrc

src (seqi
j represents node i's latest sequence

number known to node j) and the destination's sequence number
seqdst

src by one. These two sequence numbers are indicated in the
RREQ packet and denoted by seqsrc

RREQ and seqdst
RREQ respec-

tively. Each time the destination node receives an RREQ packet,
it computes a new sequence number:

seqdst
dst = MAX(seqdst

RREQ, seq
dst
dst) + 1 (1)

The destination then generates an RREP message that contains a
sequence number seqdst

RREP , which is set to seqdst
dst .

Lemma 1 Using AODVM, if a route < v1, ..., vi,..., vn > is
found, where vi is the ith node on the path, v1 is the source node
(the originator of the RREQ query) and vn is the destination, then
vi �= vj for any i �= j and 1 ≤ i, j ≤ n, i.e., there is no loop in
this route.

Proof: When a node forwards an RREP packet towards the
source, it adds an entry in its routing table to indicate a route from
the destination to the source. Assume that there is a loop on the
route, Without loss of generality, we assume that vi is on the loop.
Thus, vi would forward the same RREP message more than once.
With AODVM, when a node forwards an RREP, it ``implicitly''
informs all its neighbors that it is a part of the corresponding
route. Upon the receipt of this message, the node's neighbors
delete the entry corresponding to the transmitting node in their
RREQ tables. Thus, when vi transmitted the RREP message to
vi−1, all of the neighbors of vi that overheard the RREP would
delete the entry corresponding to vi in their RREQ tables. Thus,
these nodes would never forward another RREP to vi. If a node
failed to overhear vi's RREP message, it is possible that it may
forward an RREP to vi. However, upon the receipt of this RREP,
since vi is already on an active route, it cannot forward the RREP
to any other neighbor; vi would send an RDER message to the
particular neighbor. Thus, the loop is prevented.

Lemma 2 Using AODVM, if two routes < vsrc,..., v1i,...,vdst

> and < vsrc,..., v2i,..., vdst > are discovered, these two routes
have no common nodes except for the source vsrc and the des-
tination vdst, i.e., these two routes do not contain any common
intermediate nodes and are hence node-disjoint.

Proof: Since, from Lemma 1, a node never forwards more
than one RREP in response to the same RREQ, it is impossible

for a node to participate in more than one route. Thus, if multiple
routes are discovered, they should be node-disjoint.

One of the disadvantages with AODVM is that intermediate
nodes cannot use previously cached routing information to gen-
erate RREP messages. The RREP messages should always be
generated by the destination node. This, however, is necessary
since, if intermediate nodes generate RREPs, it might not be fea-
sible to guarantee that the discovered routes are node-disjoint.

IV. Performance of AODVM

In this section, we evaluate the performance of the AODVM
protocol and discuss the availability of multiple node-disjoint
paths with various node densities. We use a simulation model
based on ns-2 [18]. The Monarch research group in CMU devel-
oped support for simulating multi-hop wireless networks com-
plete with physical, data link and MAC layer models in ns-2.
The distributed coordination function (DCF) of IEEE 802.11 for
wireless LANs is used as the MAC layer. The radio model uses
characteristics similar to a commercial radio interface, Lucent's
WaveLAN. WaveLAN is a shared-media radio with a nominal
bit-rate of 2Mb/sec and a nominal radio range of 250 meters.
The performance metrics that we are interested in are:

• The average number of node-disjoint paths that are discov-
ered per route inquiry.

• The probability that the number of node-disjoint paths dis-
covered in any route inquiry is no less than a certain preset
threshold κ.

In our simulations we disperse a varying number of nodes
(Case 1: 250 nodes, Case 2 : 350 nodes and Case 3: 500 nodes)
uniformly in a 2500m x 2500m rectangular region. We use the
random waypoint model to model node movements. Pause time
is always set to zero and the speed of the nodes is uniformly dis-
tributed over [0, 10m/s]. In each case, we generate 20 different
scenarios. In each scenario, we randomly choose 500 source and
destination pairs. The simulation results are the average of these
10000 samples.

Since every RREPpacket tries to find the shortest path from the
destination to the source, note that the number of node-disjoint
paths discovered byAODVM is not the maximal number of node-
disjoint paths that can be found between the source and the desti-
nation. However, without expending a large amount of overhead
in order to obtain the topology information of the entire net-
work, it is impossible to compute all the node-disjoint paths. In
order to evaluate the performance of AODVM, we compare it
with an ideal case, in which the topology of the entire network
is known at the source and the source first executes the shortest
path first search algorithm. The nodes on the shortest path are
now excluded and the algorithm is executed again to compute
the next shortest path. Note that this new path is node-disjoint
from the first path. The process is then repeated until no further
node-disjoint paths can be found between the given source and
destination.

In Fig. 3 the performance of AODVM is compared with that of
the ideal case while varying the density of nodes in the network.
In Cases 2 and Case 3, AODVM can find at least 80% of the
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paths found in the ideal case, and it can find at least 70% of the
paths found by the ideal method in Case 1. The higher the node
density, the higher this percentage. This is because the higher the
node density, the higher the probability that multiple paths exist
between the source and the destination. At lower node densities,
there may exist some ``bottleneck nodes'' in regions of low node
density between the source and the destination. Since these nodes
can only route packets on a single path, other RREPs have to make
detours and find alternate routes. However, we note that there is
a limit imposed on the number of RDERs that an RREP packet
can experience. Furthermore, some of the RREQ messages are
lost due to collisions and hence, do not result in RREP responses.
Due to these effects, some alternate paths (even if they exist) may
never be found.

Fig. 4 (and Fig. 5) plot the probability that the number of
node-disjoint paths discovered in each route inquiry by AODVM
is no less than 3 (and 4) versus the number of hops4 on the shortest
path between the source and the destination. From Fig. 4, we see
that the probability that at least three paths are found is almost 1 in
Case 3, and is above 0.78 in Case 2. But in Case 1, this probability
drops quickly as the distance between two nodes increases. In
Fig. 5, the probability that at least four paths are found is above
0.77 in Case 3. In Case 2, this probability drops quickly to 0.5
as the distance between two nodes increases to about 6 hops. It
drops below 10% in Case 1 as the distance between the source
and the destination is 7 hops.

From Fig. 3,Fig. 4 and Fig. 5 we note that when the node
density is high, we can find an acceptable number of node-disjoint
paths to provide a reasonable level of robustness to node failures.
However, the number of node-disjoint paths that are discovered
is very limited even at moderate node densities (for example,
Case 1). In order to route information reliably in cases wherein,
multiple node-disjoint paths are not available, a certain number
of ``reliable nodes'' should be placed in the network. In the next
section we describe the functionality of these reliable nodes and
describe a methodology to control their trajectories to achieve
higher routing reliability.

V. A framework for reliable routing

In the previous section we saw that, without expending a large
amount of overhead, one cannot find a sufficient number of node-
disjoint paths between a given source and a destination to pro-
vide a reasonable degree of robustness to node failures. This
was especially true if the source and the destination were far
away from each other. One could immediately think of finding
edge-disjoint paths; however, nodes that are at the intersection
of multiple routes might fail and this might cause all the routes
which pass through such a node to fail simultaneously upon the
node's failure. Thus, it is conceivable that one would attempt to
deploy those nodes that are more reliable than others at junctions
connecting multiple node-disjoint segments (a segment is a path
between two nodes, see Fig. 6).

In this work, we propose that a set of these reliable nodes be
deployed in an ad hoc network for the purposes of increasing

4A measure of the distance between the two nodes.
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reliability and security. This proposition is not unrealistic in the
sense that in typical ad hoc deployments one can envision the
presence of multiple types of nodes. In a battlefield network, one
could have unreliable low power sensors or handhelds, whereas
there could be the more reliable, power capable and secure nodes
that are located in a tank or any other large vehicles. It is also
common in security research to assume the presence of the so
called ``trusted nodes" [19]. For the ease of discussion, we refer
to these reliable nodes as R-nodes. It would be naturally expen-
sive to deploy a large number of these R-nodes and the R-nodes
would constitute a small fraction of the entire ad hoc network.
The question that we are trying to answer is: if the objective of
deploying these R-nodes is primarily to support a reliable routing
framework, then, where should these R-nodes be positioned and
how should their trajectories be controlled?

Before we try to answer this question we first define what we
call a reliable path. In the absence of the R-nodes, we state that
a reliable path exists from a source to a destination if the number
of node-disjoint paths that can be found between this source and
destination is at least equal in number to a preset threshold κ.
When the R-nodes are deployed, the definition of a reliable path
changes. If one can concatenate a sequence of reliable segments
between the source and the destination node, then the path is said
to be reliable. A segment is defined to be reliable if the number
of node-disjoint paths that can be found between the end nodes
of the segment is at least equal in number to κ, or, if the segment
entirety consists of reliable nodes. Note that, while concatenating
reliable segments, the nodes at the intersection of such segments
ought to be reliable5. As an example, we have a path from a
source S to a destination D in Fig. 6. The value of κ is set to
three. There are three R-nodes R1, R2 and R3. We see that the
end-to-end path from S to D may be deemed reliable since we
can concatenate three reliable segments, the first from S to R1,
the second from R1 to R3 and finally the last from R3 to D.

It is important to position the R-Nodes so as to maximize their
utility. As the nodes in the mobile ad hoc network move, it may
become necessary to move the R-nodes relative to the motion
of the other nodes. If the network is dense all over, it would
be possible (as the results indicated with AODVM) to find a
reasonable number of paths between any arbitrary source and
destination pair. As an example, when the average node degree
was set to 13.5 (Case 3 in Section IV), AODVM was able to find
eight paths, on average. When we considered a large sample of
source-destination pairs that are separated by a fixed hop count
on the shortest path between them, we found that the minimum
and the maximum of the number of paths that are found between
such pairs are significantly different. Thus, the reason why we
could not find multiple paths between nodes that are distant from
each other is most probably because of the presence of sparse
regions in the network which act as bottlenecks. If we could
place the reliable nodes in these sparse areas, it appears as if we
could create the desired reliable paths. Randomly placing these
R-nodes is not likely to provide us with any performance gains (as

5We assume the communicating entities are reliable and have mutually authen-
ticated themselves.
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Fig. 7. (a) The maximum-degree node (the black node) is the bottleneck node
in the network. (b) The minimum-degree node (the black node) is the bottleneck
node in the network.

we shall see later). By placing these R-nodes such that they would
directly interconnect with the maximum number of ad hoc nodes
(i.e., have a maximal degree) would probably not help either as
we see in the example in Fig. 7. In Fig. 7(a), the black node has
the largest degree in the network. In Fig. 7(b), the black node
has the smallest degree in the network. However, each node has
an equal importance in terms of keeping the network connected,
i.e., ensuring that a single path exists between any two nodes.
Our objective is similar, i.e., identify positions for the R-nodes
such that the probability of the existence of a reliable path (given
a value of κ) between any two given nodes is high. Towards
this, we use a modification of the randomized min-cut algorithm
which we describe in the next sub-section.

A. Min-cut algorithm and our modification

Prior to describing how the randomized min-cut algorithm may
be used to determine where the R-nodes are to be placed, we
describe the randomized min-cut algorithm [8] in brief.

Let G(V,E) be an undirected weighted graph which is con-
nected. A cut in G is a partition of the vertices V into two non-
empty sets S and S. The value of a cut is the sum of the weights
of the edges crossing the cut. If the weights of all the edges in
G are one, then the value of a cut is the count of those edges that
have one end-point in each of the two sets S and S. The min-cut
is the cut(s) with the minimum cut value of all the possible cuts.
If all the edges inG are of unit weight, the min-cut is the number
of edges that must be removed from G to separate it into two
partitions. The smaller one of these two partitions is then called
min-cut set.

Acut of a given graph can be obtained by what is called the con-
traction algorithm. The basic idea of the contraction algorithm
is to randomly choose an edge (x, y) in G and replace vertices x
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and y by a new vertex z; for each v /∈ {x, y}, the weight of the
new edge (v, z) is the sum of the weights of edge (v, x) and edge
(v, y); the rest of the graph remains unchanged. The contraction
procedure is repeated until there are only two nodes and one edge
left. The cut value is then the weight of the edge that connects
these two nodes. During each iteration of the contraction pro-
cedure, a single edge is chosen and the two nodes connected by
this edge are contracted. Thus, if there are n nodes in the graph,
the algorithm takes O(n2) time. Note that this running time is
independent of the number of edges in the graph. It can be proved
that the probability that the min-cut of a graph G is found by a
single run of the contraction algorithm is bounded by Ω(n−2)
[8]. If we repeat the contraction algorithm O(n2logn) times,
we can expect with a reasonable probability that some iterations
of the contraction algorithm find the min-cut. Thus, in order to
compute the min-cut value of a given graph G, we would expect
to incur a run time of O(n4logn).

In order to determine where the R-nodes ought to be placed, we
require each node to compute the min-cut of a partial graph. The
objective is to determine how vulnerable the network is, in terms
of becoming partitioned if a particular node was removed from the
graph (i.e., as in failure). We assume that each node can obtain
a partial topology view of the network; more specifically, we
assume that it knows the entire topology within some k hops from
itself (k is a system design parameter). The node then removes
itself and the edges incident on itself from the graph representing
this partial topology6. It then runs the min-cut algorithm with the
following modification: The outermost links are contracted first,
and the links that are closest to the node are contracted last. This
is done in an attempt to ensure that the min-cut is an accurate
indicator of the importance of the computing node in keeping the
localized topology connected. As an example, in Fig. 8(a), the
black node is the one performing the computations; one would
like the min-cut to in fact ``pass'' through the links associated with
the black node (shown by the dotted lines) as shown. Without
the requirement that the outermost edges be contracted first, the
min-cut would probably pass through one of the outermost edges.
In Fig. 8(a), without the requirement, the min-cut would pass
through the link between nodes V1 and V2, and its value is one.
This however, does not reflect on the relative importance (which
is of interest) of the black node in keeping the graph connected.

Fig. 8(b) through 8(j) illustrate one of iterations of the contrac-
tion algorithm which finds a cut value of the graph shown in Fig.
8(a). The initial weight of every edge is one. In each contraction
step, an edge (we choose the dashed edges as shown7) is chosen
first, among the outermost edges, and the two nodes connected
by this edge are contracted. The inner most edges are chosen in
the final few steps. Finally (Fig. 8(j)), only one edge and two
nodes are left. The value of the cut as determined by this iteration
is two.

Since our modification does not change the number of nodes

6Clearly this is done to estimate the vulnerability of the localized neighborhood
in terms of becoming partitioned if the node performing the computation were to
fail.

7This choice is arbitrary and is done simply for illustrative purposes. We could
choose the edges in a different order as well.
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Fig. 8. An iteration of the contraction algorithm.

in the input topology and the only difference is in the contraction
sequence of the nodes, the computation complexity remains the
same as that of the original min-cut algorithm, i.e.,O(n4logn), if
there are n nodes within k hops of the node computing the min-
cut. If k is small, the complexity may be expected to be fairly
low.

In the following sub-sections we describe a centralized and
a distributed approach of using the above methodology to de-
termine the best positions for placing the R-nodes. Although a
centralized approach is unrealistic within a mobile ad hoc net-
work setting, it is useful in terms of evaluating the goodness of
our distributed algorithm.

B. Using a centralized controller to determine R-node placement

In the centralized strategy, we assume that the topology infor-
mation of the entire network is known to every node. Every node's
min-cut value and min-cut set are computed a priori with respect
to a graph of its local topology up to k hops from it. As described
earlier, we then place the R-nodes in the positions occupied by the
nodes with the lowest min-cut values. This centralized strategy
requires a static network topology and mobility is not allowed.
The performance in terms of the probability that a reliable path
is found between an arbitrarily chosen pair of nodes, as achieved
by thus the placing of R-nodes, can be used as a benchmark to
compare with our distributed version of the R-node placement
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algorithm.

C. The distributed R-node deployment strategy

In the distributed R-node deployment strategy, we assume that
each node in the network has information (by using GPS or other
techniques) that specifies its own coordinates. We further sup-
pose that every node periodically broadcasts a HELLO message
to its neighbors; information which specifies the topology of the
node's k-hop local neighborhood is included in this HELLO mes-
sage. If k is small, we can expect that within some short finite
time, each node has the complete information about the topology
of its k-hop neighborhood. R-nodes transmit HELLO messages
as well. In an R-node's HELLO message, there is a flag that is
used to indicate its motion status: static (if this R-node's posi-
tion has been determined) or dynamic (if this R-node is still in
the process of determining where to move). Each normal node
can thus construct two local topology graphs, the first with the
static R-nodes and the second without the static R-nodes. The
dynamic R-nodes are not included in either of these two graphs.
A node periodically calculates its min-cut value and the size of
the min-cut set based on these two graphs. Note that the weight
of a direct link between two static reliable nodes is set to κ. All
the other links have weight of one. The computed min-cut values
and the corresponding min-cut set sizes are piggybacked onto the
node's HELLO message. An R-node compares the min-cut value
and the min-cut set sizes of the nodes in its k-hop neighborhood,
and it moves to the proximity of the normal node that has the
minimum min-cut value. If the min-cut values of two nodes are
the same, the reliable node will move to the proximity of the node
that has a larger min-cut set.

In order to prevent multiple R-nodes from moving to the same
location at the same time, before an R-node moves to the proxim-
ity of a normal node, it sends out a motion request to that normal
node. The R-node does not move until it receives a motion con-
firmation from the normal node. Some additional constraints can
also be incorporated, such as requiring that no two R-nodes can
be too close8, and limiting the number of R-nodes within the
range of a particular R-node9.

D. Modifications to AODVM

In order to allow the incorporation of the R-nodes and to allow
these nodes to participate in multiple paths, AODVM has to be
further modified. However, the changes are very simple and
lightweight.

In each RREPpacket, we include what we call a reliability flag.
When the RREP packet passes through an intermediate node, this
flag is set to RELIABLE only if this intermediate node is an R-
node and if the original value of this flag was also RELIABLE.
Otherwise, this flag is set to NORMAL. If an intermediate R-node
can not find a next hop R-node to forward this RREPpacket, it will
split the RREP packet into multiple RREP packets equal in count

8We specify this distance to be 50m in our simulations. However, this would
be a system parameter that can be configured.

9This is a system parameter as well. However, in our simulations, we found
that if this number is set to 4, we observe the best performance.

to the number of neighbors specified in its RREQ table. All of
these RREP packets are marked NORMAL and then forwarded to
the different neighbors. In the example in Fig. 6, let us assume
that κ is set to three. Initially, node S generates and sends an
RREQ message to node U . Upon receiving the RREQ10, node U
generates an RREP packet and attempts to send this packet back
to S via R3, R2 and R1. When R1 receives the RREP message
(marked RELIABLE), it is unable to forward it further to a reliable
node. Being aware, that it has actually received three copies of
the original RREQ from three normal ad hoc nodes (by means of
its RREQ table), it then makes three copies of the RREP message
received from R2. It then marks these messages NORMAL and
forwards one copy to each of the three neighbors. The three
RREP copies, then, find their way to the source. Since κ was
three, and three RREP messages were received, the source infers
that a ``reliable path'' is available to the destination U .

E. Effects of node mobility

The mobile ad hoc network topology changes as nodes move.
In order to maintain the reliable routing framework, the R-nodes
will have to correspondingly move to revised locations as the
network evolves. If the maximum speed of motion of the R-
nodes is the same (or lower than) as that of the normal nodes,
they will not be able to move quickly enough to new strategic
positions in a timely manner. Thus, a requirement would be that
the R-nodes should be able to move at much faster speeds as
compared to its normal ad hoc nodes. This is conceivable since
as mentioned earlier these R-nodes are typically powerful and
housed in large vehicles as opposed to being sensors or being
carried by pedestrians.

VI. Performance evaluation of R-node deployment
strategies

In our simulations, we focus on Case 1 described in section
IV. In this scenario, 250 nodes are deployed in a rectangular
area of 2500m x 2500m. We choose this case to demonstrate the
effectiveness of our R-node deployment strategy even when the
density of nodes in the network is moderate. In all our simulation
experiments we choose κ (the number of paths that would deem
a particular segment, made up of normal ad hoc nodes, reliable)
to be either 3 or 4. This number seems to be reasonable for the
population size considered and we want to avoid extremely long
paths that are difficult to maintain11.

A. Performance of the centralized R-node deployment strategy

We first study the effects of the parameter k 12 on the perfor-
mance of the strategy in terms of the probability that a reliable
path is found between an arbitrary source and destination that are
separated by a minimum hop-count (we shall refer to this proba-
bility asPR for convenience). It is desirable thatk should be small

10Notice that only a single copy of the RREQ is received by the destination.
11The longer the path, the higher the probability of its failure.
12To recollect, each node is assumed to know the topology up to within k hops

of itself.
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Fig. 9. Comparison of the performance of the centralized R-node deployment
strategy for various values of κ and k.

since otherwise, one would have to disseminate a large amount
of control information to enable a node obtain this topology in-
formation. We assume that the R-nodes are placed in accordance
to our centralized min-cut based strategy. Fig. 9 shows that the
strategy is somewhat insensitive to the choice of k (within a rea-
sonable set of values that we can expect k to take). To be more
specific, the increase in PR when k is increased from 2 to 4 is not
significant (less than 0.1 in most cases). Since the complexity of
the min-cut algorithm in terms of running time isO(n4logn), we
choose the lower value i.e., k = 2 in all further studies. We also
point out that this means that only a small amount of topological
information is actually necessary for achieving a considerable
improvement in performance (as to be seen later).

Next, we compare the performance results of the min-cut based
centralized R-node deployment strategy with those of several
other R-node deployment strategies.

• Random strategy: A strategy in which the R-nodes are ran-
domly deployed.

• Degree based strategy I:Astrategy in which the R-nodes are
placed in the proximity of nodes with the minimum degrees.
Towards this, we first sort the nodes in accordance with an
ascending order in terms of their degree. If there are n R-
nodes, they are placed in the vicinity of the first n nodes in
the ordered list. This strategy appeared to be a good choice
initially since we would expect that the minimum degree
nodes are the bottlenecks when attempting to find multiple
paths.

• Degree based strategy II: A strategy in which the nodes with
the minimum degrees are identified first as in the previous
strategy; the R-nodes are placed in the proximity of the
highest-degree neighbors of these nodes (one neighbor for
each node). We do this since we recognize that the minimum
degree nodes may in fact, be at the edges of the area that we
consider and the bottlenecks may be due to the fact that these
nodes have a single link to the rest of the network. Through
this strategy ,we attempt to make such links reliable.

From Fig. 10 and Fig. 11 we see that the random R-node
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Fig. 10. Comparison of the performance of the various R-node deployment
strategies with κ = 3.
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Fig. 11. Comparison of the performance of the various R-node deployment
strategies with κ = 4.

placement strategy does not help much in finding a reliable path
between two arbitrary chosen nodes when 10% of the nodes are R-
nodes. It results in almost the same performance as that achieved
in a case wherein there were no R-nodes. Degree based strategy
I and degree based strategy II can help in increasing PR, but
the achieved performance is still inferior as compared with the
performance of the min-cut based strategy by about 18% when
κ = 3 and by 25% whenκ = 4. These comparisons prove that the
min-cut based R-node deployment strategy is very effective and it
offers the highest value of PR among all the schemes considered,
especially when the number of deployed R-nodes is small.

B. Performance of the distributed R-node deployment strategy

The performance of the distributed R-node deployment strat-
egy without and with node mobility are studied next. We consider
two cases. In the first case, all the normal nodes are static, and
only the R-nodes move around and find their optimal positions.
Initially the R-nodes are scattered uniformly as well. In the later
case, both the R-nodes and the normal nodes are allowed to move.
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Fig. 12. Effects of mobility on the distributed R-node deployment strategy.

The random waypoint model is used to model a normal node's
mobility pattern. The speed of the normal nodes is uniformly
distributed over [0, 2m/s]. The moving speed of the R-nodes is
10m/s, and the trajectories of these nodes are defined by the de-
ployment strategy. This is in line with the requirement specified
of R-nodes in sub-section V-E. Fig. 12 shows that the distributed
deployment strategy, in the first case (without mobility), performs
worse than the centralized deployment strategy. This is because,
in the distributed strategy, the R-nodes do not have a central con-
troller which can provide global topology information. Based
on the available local information that is disseminated, they will
have to move around and find their positions. Some of the posi-
tions that the R-nodes choose may not be the optimal ones from
the global point of view. Furthermore, the network topology
changes with the movement of R-nodes, such changes make it
more difficult for the R-nodes to find the best positions.

From Fig. 12 we see that the distributed strategy, performs only
a little worse when there is mobility as compared with the case
wherein there is no mobility (by about 5% at most when κ = 3).
The R-nodes can trace the topology changes in a timely manner
in spite of mobility and adaptively modify their trajectories to
find the best possible positions. Thus, our distributed R-node
deployment strategy can be applied in practical mobile ad hoc
networks, in which the normal ad hoc nodes are either static or
have pedestrian type motion.

VII. Conclusions

In this paper, our objective was to provide robustness to both
intermittent (or short term) and long term node failures in ad hoc
networks. These failures could be a result of either fading, bat-
tery failure or compromises. The computation and use of multiple
node-disjoint routes could potentially provide some tolerance to
node failures. We proposed modifications to a popular ad hoc
routing protocol AODV, to enable the computation of multiple
node-disjoint paths without incurring the overhead generated by
link-state routing methods. Our simulation results show that the
number of node-disjoint paths that can be found between a source
and a destination depends on the density of nodes in the network.

Furthermore, we find that even at moderate node densities (av-
erage node degree is 6.7), the number of node-disjoint paths that
may be found are very limited (around 2 if the distance on the
shortest path between the source-destination pair is 7). Thus,
we infer that it is necessary to populate the network with a few
reliable nodes that are physically more sophisticated in terms of
being capable of combating fading, possessing better batteries
and physically more secure. These nodes which we call R-nodes
are mainly used for creating a reliable routing framework within
the ad hoc network. We then attempt to address the question of
where the R-nodes are to be positioned within the ad hoc network
and how their trajectories are to be controlled if a notion of routing
reliability is to be provided. We define reliable path to capture
the notion of routing reliability and evaluate the performance of
R-node deployment strategies in terms of the probability that a
reliable path is found between a source and a destination. We
propose a strategy based on the randomized min-cut algorithm.
We show that our strategy has the best performance in terms of
the above defined metric as compared with the other possible
strategies that we considered, and that it can cope with dynamic
topology changes due to low mobility patterns. We believe that
the architecture proposed and developed, is necessary and is a
viable option for providing a reliable routing framework in ad
hoc networks.
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