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Abstract

Several recent studies have indicated that TCP perfor-
mance degrades significantly in mobile ad hoc networks.
This paper examines how bad TCP may perform in such
networks and provides a quantitative characterization of
this performance gap. Previous approach typically makes
comparisons by ignoring the inherent dynamics such as mo-
bility, channel error, and shared-channel contention. Our
work provides a realistic, achievable TCP throughput upper
bound, and may serve as a benchmark for the future TCP
modifications in ad hoc networks. Our simulation findings
indicate that node mobility, especially mobility-induced net-
work disconnection and reconnection events, has the most
significant impact on TCP performance. TCP NewReno
merely achieves about 10% of a reference TCP’s throughput
in such cases. As mobility increases, the relative through-
put drop ranges from almost 0% in static case to 1000% in
highly mobile scenario (mobility speed is 20m/sec). In con-
trast, congestion and mild channel error (say, 1%) have less
visible effect on TCP (with less than 10% performance drop
compared with the reference TCP).

1 Introduction

The proliferation of mobile computing devices such as
notebook computers and PDAs has spurred growing inter-
ests in the use of mobile ad hoc networks. In an ad hoc
wireless network, users can communicate with each other
or even access the Internet over the multihop, shared wire-
less channel using a transport protocol. Since TCP has been
the de facto standard protocol used in the Internet, it is very
likely that TCP will also find its application in mobile ad
hoc networks to ensure reliable packet delivery and provide
efficient bandwidth utilization.

Several recent studies have examined TCP performance
in mobile ad hoc networks. Gerla et al. [6] studied the im-
pact of wireless MAC protocols such as CSMA, FAMA and
MACAW on TCP. Their study showed that TCP through-
put will decrease significantly over multihop wireless links
that implemented these MAC protocols. Holland et al. [1]

studied the effects of mobility-induced link breakage upon
TCP throughput. Their results showed that TCP throughput
drops significantly when nodes move, due to TCP’s inabil-
ity to recognize the difference between link failure and con-
gestion. They further suggest a technique of explicit link
failure notification (ELFN) to improve TCP performance.
In ELFN, the TCP sender is notified upon mobility-induced
link failure events and subsequently does not invoke its con-
gestion control actions. A more recent study [5] examines
the limitations of ELFN proposal. They showed that the
introduction of ELFN may decrease TCP throughput by as
much as 5% in static topologies, since link failure may hap-
pen due to MAC-layer contentions. Other studies ([7],[8])
seek to differentiate packet losses between congestion and
route failure to further improve TCP performance.

All these recent studies showed that TCP performance
degraded significantly in mobile ad hoc networks. What is
missing in TCP research is a better quantitative characteri-
zation of this performance degradation. If TCP has to oper-
ate within the rich dynamics and harsh constraints imposed
by ad hoc networks, which include mobility, channel errors,
and link-layer contentions in the multihop, shared wireless
channel, it is not correct to expect that TCP performs as well
as in static, wired or wireless networks. The authors of [1]
defined a metric expected throughput to gauge the impact of
route changes on TCP. The expected throughput is defined
as TCP throughput simulated over a static (fixed) network
of a linear chain topology having the same number of hops
as in the mobile scenario. This approach, however, fall short
of realistically considering the dynamics of mobility, chan-
nel error and congestions, the key impacts of the multihop
ad hoc network that makes TCP perform different from the
traditional wire-line networks.

This paper seeks to quantitatively characterize the per-
formance degradation of TCP under these dynamics of the
mobile ad hoc networks. To this end, we design and imple-
ment a reference TCP (R-TCP) protocol, in the event-driven
network simulator ns-2. R-TCP uses perfect information on
packet loss, collected from the simulator traces, to help the
TCP sender respond appropriately. Therefore, R-TCP does
not ignore the dynamics induced by mobility, shared chan-
nel contention and channel errors. Instead, it seeks to re-
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act adaptively upon each event. This way, our performance
comparison of TCP and R-TCP gives a more realistic ap-
proximation. Furthermore, it serves as a benchmark to eval-
uate the effectiveness of future TCP modifications over ad
hoc networks.

Our main simulation findings can be summarized as fol-
lows. We observe that node mobility, especially mobility-
induced network disconnection and reconnection, has the
most significant impact on TCP performance. In contrast,
congestion and mild channel error has less visible effect
on TCP. Other factors such as routing protocols, receiver
and router buffer size, average hop number may lead to
10%�700% throughput decrease for TCP.

The rest of the paper is organized as follows: Section 2
describes the design ad implementation of the R-TCP proto-
col. Section 3 applies R-TCP in various simulation scenar-
ios and compares it to the performance of traditional TCP.
An analysis is also presented. Section 4 concludes this pa-
per.

2 Design and Implementation of R-TCP us-
ing NS-2

Design of R-TCP We start our evaluation by designing
a reference TCP (R-TCP) protocol for ad hoc networks in
ns-2 simulator. Two main components of R-TCP are as fol-
lows. (1) A global monitor (GM) is available at both the
R-TCP sender and the receiver side. This global monitor
has perfect knowledge of each packet’s loss behavior by ex-
tracting information from the lower-layer traces of ns-2. (2)
When packet loss occurs, the reaction of R-TCP sender dif-
fers from TCP NewReno according to network conditions.
During normal transmission state when no packet loss hap-
pens, R-TCP behaves identical to TCP NewReno. When
timeout is triggered or three duplicate ACKs are received at
the sender, the sender will collect packet loss information
from the global monitor and reacts accordingly.

Obviously, the assumption of real-time, perfect knowl-
edge of real packet loss causes is not realistic and not im-
plementable in real hardware. However, recent studies have
shown that ns-2 simulation results match fairly well with
real hardware experimental measurements in ad hoc net-
working scenarios [9]. Our R-TCP simply assumes that the
sender is intelligent enough to make a correct decision for
each packet loss. Other than this, R-TCP does not make
any additional modifications within the ad hoc network-
ing infrastructures. Thus, we believe that the performance
comparison between R-TCP and standard TCP protocols is
meaningful.

R-TCP can also be used to analyze the performance
degradation due to each component in ad hoc networks.
These components can be radio channel contention, node
mobility, channel error and etc. This detailed breakdown of

performance penalty may shed new lights on TCP design
over ad hoc networks.

UPON 3rd DUPLICATE ACK:

reason = get_reason();
//invoke the global monitor to investigate

if(reason & Congestion)
/* congestion happens,

do what TCP NewReno does */
slowdown();
reset_rtx_timer(1,0);// don’t backoff
output(last_ack_+1, TCP_REASON_DUPACK);

else // no congestion
if(reason & Channel_Error)

/* channel error happens, transmit the
lost packet without slow down*/

reset_rtx_timer(1,0);
output(last_ack_ + 1, TCP_REASON_DUPACK);

else if(reason & Route_Change)
/* new path established,

initiate a slow-start */
slowdown();
reset_rtx_timer(1,0); //don’t backoff
output(last_ack_ + 1, TCP_REASON_DUPACK);

UPON RETRANSMISSION TIMEOUT:

reason = get_reason();
if(reason & Congestion)

set CONGESTION flag;
slowstart();
reset_rtx_timer(0,1); //exponentially backoff
send_much(0, TCP_REASON_TIMEOUT, maxburst_);

else if((reason & Disconnection) ||
(reason & Channel_Error) )

/* prolonged disconnection or blackout
period, enter probing state */

set PROBING_STATE on;
rtx_timer_.reschedule((t_srtt_ >>

T_SRTT_BITS)*tcp_tick_);
rtt_active_ = 0;
probing();

else if(reason & Route_Change)
//route change
slowstart();
reset_rtx_timer(1,0);
output(last_ack_ + 1, TCP_REASON_DUPACK);

Figure 1. Pseudo Code of R-TCP

Implementation of R-TCP in ns-2 simulator In order to
log each packet loss event within the simulation, we im-
plemented a global monitor in ns-2. Every time when the
sender triggers a timeout event or receives three duplicate
ACKs, it queries the global monitor and finds out the real
cause for the packet loss. Typically, packet loss can be in-
curred by one of the following four synthesized reasons:

� Congestion. Congestion is triggered by queue over-
flow at an intermediate router or an interface queue. In
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ns-2, this can be done whenever an ”IFQ” (interface
queue packet discard) event is detected in the event
logs of the global monitor.

� Disconnection. Disconnection is detected when two
communicating nodes are out of their communication
range. In ns-2, this is done by computing the physical
distance of two nodes via tracking the physical loca-
tion of each wireless node in the network.

� Channel error. The occurrence of channel error is de-
tected from the discarded packets marked as ”ERR”.

� Route change. Route change may trigger out-of-order
packet delivery and invoke duplicate ACKs. It can
be detected through one of two sequence events: (a)
”RET” and ”NRTE”, indicating MAC-layer maxi-
mum retransmission time is exceeded, or (b) ”ARP”
and ”NRTE”, indicating no route to destination avail-
able.

After extracting real packet loss cause from the global
monitor, R-TCP designs corresponding actions for each loss
behavior. In this part, we claim no special wisdom to de-
sign intelligent response actions. We take the same action
as TCP when a congestion event is triggered. If channel er-
ror occurs, R-TCP retransmits the lost packet but does not
reduce its current congestion window size. When a route
change event is detected, indicating the TCP flow has taken
a new path, R-TCP restarts from slow start phase in conges-
tion control. During disconnection period, R-TCP freezes
TCP congestion control and starts to actively probe the net-
work to learn when reconnection happens. Figure 1 is the
pseudo code of R-TCP.

In some sense, R-TCP takes a conservative approach in
its response design. For example, when a route change oc-
curs, R-TCP does not continue with its current window size;
instead, it goes back to slow-start along the new path. This
is clearly quite conservative.

3 Performance Evaluation

3.1 Basic Simulation Settings

Our basic simulation settings consist of 30 nodes, lo-
cated in a 400m�800m area. The effective communication
range for each node is 250 meters. The average hop number
from the sender to the receiver is about 6 � 7. These pa-
rameters are intended to reflect reality and to be consistent
with the IETF drafts. For both R-TCP and TCP NewReno,
the maximum receiver window size is 8 packets, and each
packet size is 1460 bytes. By default, we use IEEE 802.11
DCF mode and DSR as the MAC layer protocol and rout-
ing layer protocol respectively. Each wireless node has 50
packet buffer space and its raw radio link capacity is 2M

bps. Each simulation lasts for 300 seconds. The average
throughput is computed based on the maximum packet se-
quence number received during the whole TCP session. In
all the figures, we use solid line to represent TCP NewReno
and dotted line to represent R-TCP.

3.2 Impact of Congestion

We first characterize the performance in a static, clean-
channel ad hoc network with some nodes being the bottle-
necks. Specifically, we use 2 UDP flows with rate 200Kbps.
Both these UDP flows only run within the time intervals
[50; 250] and [100; 200], and they go across the same con-
gested node as the TCP flow. Figure 2 (Left) shows that
R-TCP performs very closely to TCP NewReno in the pres-
ence of congestion only. This means that if nodes are static,
without channel error, TCP NewReno does not have signif-
icant performance degradation compared to R-TCP. From
the traffic trace, we observe that up to 5% performance
degradation is due to unnecessary retransmissions at the
sender side. When intense MAC layer contention at certain
nodes makes RTT extremely long, the sender will experi-
ence retransmission timeout.

3.3 Impact of Mobility

We now let all nodes in the topology move continu-
ously at a speed of 5m=s except for the TCP sender and
receiver. In order to keep the average hop number from the
sender to the receiver unchanged, we fix the sender and re-
ceiver at the left-upper and right-lower corner of the topol-
ogy respectively, then we let all the other nodes roam ar-
bitrarily. The results are depicted in Figure 2 (Middle). It
clearly shows that TCP NewReno suffers tremendously in
this case. Its throughput is only about 1/7 of that achieved
by R-TCP. This phenomenon is due to the fact that TCP
NewReno cannot differentiate packet loss incurred by mo-
bility from packet loss incurred by loss congestion. When-
ever packet loss happens, it just double the retransmission
timeout(RTO), even upon temporary disruption of connec-
tivity along the delivery path. From the trace file, we found
a sequence of route change events happening at the 50 sec-
ond (see Figure 2 middle). This has caused TCP NewReno
to experience timeouts repeatedly. As TCP NewReno ex-
ponentially enlarges its RTO after each timeout, the wasted
time which could have been used for packet transmission
also grows significantly. In an unfortunate situation de-
picted by Figure 2, the TCP NewReno could hardly recover
from transient connectivity interruptions; compared to R-
TCP, TCP NewReno only utilizes one over seventh of the
total available bandwidth in this case.
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Figure 2. Comparason of R-TCP and NewReno under different conditions Left: Congestion, Middle: Nodes move with 5m/s,
Right: Channel Error with 1%.

3.4 Impact of Channel Error

Continuing from the scenario of Figure 2 left, where we
have two UDP flows running during the periods [50, 250]
and [100,200] respectively and we keep all the nodes sta-
tionary, we further introduce channel error to the simula-
tion. The channel error process is modeled by a two-state
Markov chain with an average error rate of 1%. Surpris-
ingly, here the result in Figure 2 (Right) shows that TCP
NewReno performs quite comparably with R-TCP. TCP
NewReno’s throughput is only 10% less than R-TCP at the
end of the simulation. Our explanation is that since we
are using IEEE 802.11 MAC protocol, most of the random
channel errors have been masked by the backoff and retrans-
mission mechanism of this underlying protocol. However,
in the presence of a long bursty channel error, packet loss
can still occur. This is exemplified by the blackout period
during [170; 200] in Figure 2 (Right), where R-TCP is able
to recover faster than TCP NewReno for its probing mech-
anism.

3.5 Composite Simulation Set

In previous section, we describe the performance degra-
dation of TCP NewReno in ad hoc networks with specific
settings of congestion, mobility and channel errors. Now
we present a more complete picture on this performance
degradation as depicted by Figures 3 to 4. In each of these
figures, the x axis represents the mobility speed; the y axis
represents the throughput measured in bit per second (bps).
To smooth random effects introduced by specific topology
and mobility pattern, for each set of simulation parameters,
we repeat the experiment for 20 times and take the aver-
age. The plots presented in the following is based on such
average values.

Mobility From the 6 plots of Figure 3 and 4, we ob-
serve that, as a general trend, the performance of both
R-TCP and TCP NewReno decreases when the mobility
speed is increased. However, the performance decrease in
TCP NewReno is much more dramatic compared with R-
TCP. From Figure 3 (Left), at mobility speed of 10 m/s,

NewReno’s throughput is 10K bps, only 10% of its through-
put (95K bps) achieved in static case. Given various mobil-
ity speeds in Figure 3 (Left), we show that NewReno consis-
tently performs worse than R-TCP. The improvement poten-
tial for NewReno is maximized when mobility speed goes
from Low (around 2m/s) to Medium (around 10m/s), there
NewReno throughput can be improved as much as 4 times
according to our R-TCP measurement. Such performance
gap mainly results from NewReno’s inability to handle dif-
ferent packet loss situations efficiently, and being unaware
of the impact of mobility in the underlying network.

The improvement potential tends to decrease as the
speed goes from Medium to High (around 20m/s).

When the mobility speed is high, the performance
of both R-TCP and TCP NewReno becomes constrained
by the underlying routing protocols. However, since
NewReno’s slow response to topology change, it always
wastes time on backing off when topology changes and
effective communication is possible. As shown by Fig-
ure 3 (Left), the absolute performance gap at high mobility
speeds is about 12K bps and R-TCP performs 1000% better
than TCP NewReno.

Congestion In the set of simulations carried in Figure 3
(Middle), we introduce UDP traffic as before to create con-
gestion in certain intermediate nodes. We observe that be-
tween mobility speeds 1 m/s and 10 m/s, R-TCP performs
up to 300% better than NewReno with absolute throughput
gap of 20K bps at low and medium mobility speed. While
at higher mobility speed, the absolute performance gap de-
creases to 8K bps with a 500% performance gap.

Comparing Figures 3 (Left) with Figures 3 (Middle) ,
we observe that the existence of a congested node reduces
the performance gap between TCP NewReno and R-TCP.
Similar observation can be obtained by comparing Figures 3
(Right) with Figures 4 (Middle).

Channel Error From Figure 3 (Left) and (Right), we
again confirm that channel error at low level(less than 1%)
can be masked by lower protocols and does not affect TCP
performance significantly. However, for channel error at
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Figure 3. Comparison of TCP NewReno and R-TCP under more complex conditions. Left: Mobility Only, Middle: Mobility
+ Congestion, Right: Mobility + Channel Error 1%
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Figure 4. Comparison of TCP NewReno and R-TCP under more complex conditions - Continued. Left: Mobility + Channel
Error 10%, Middle: Mobility + Congestion + Channel Error 1% Right: Mobility + Congestion + Channel Error 10%

high level (10% or even higher), as exemplified by fig-
ure 4 (Left) and (Right), both R-TCP and TCP NewReno
suffer from bad channel conditions and experience period-
ical blackout. One interesting observation from these two
figures is that the performance at mobility speed 2m=s is
higher than the static case. From the trace file, we find
that here there exists a prolonged bursty channel error, how-
ever, at the same time the node mobility induces a path
re-selecting process which greatly lessens the impact im-
posed by this channel error, thus improves the overall per-
formance.

3.6 Some Special Cases

We also test the impact of other factors including adver-
tised window size, routing protocol (AODV versus DSR)
selection, buffer size and average hop number. To em-
ulate real environments, without specification, we set the
wireless channel error rate as 1% by default, we also as-
sume that nodes randomly move at a speed 5m=s within a
400m � 800m topology. Two competing UDP flows are
introduced in the same way as in previous section to create
a mild congestion. There are 30 mobile nodes in the topol-
ogy. The average hop number between the sender and the
receiver is 6. The default TCP parameter settings are the
same as in previous simulations.

Parameters Related to TCP Figure 5-1 shows the ef-
fect of increasing TCP advertised window size from 1 to
32 packets. The throughput of TCP NewReno is only one

fourth of that of R-TCP when the advertised window size
is 2, and the absolute throughput gap is at least 10K bps
throughout all the scenarios we simulated.

For both TCP NewReno and R-TCP, the maximum per-
formance occurs when the window size is 2 packets and the
average path length is 6 hops. This confirms the observation
in [6].

Routing Protocol Figure 5-2 shows the performance
when applying another ad hoc routing protocol AODV. We
have similar observation. TCP NewReno performs consis-
tently worse than R-TCP. The performance improvement of
R-TCP over NewReno ranges from 30% at mobility speed
at 5 m/s to 300% at high mobility speed of 20 m/s. Fig-
ure 5-3 is on the effect of the buffer size at each interme-
diate router node. For TCP NewReno, smaller buffer size
helps reduce the RTT, and makes TCP sender to time out
and retransmit more promptly. Larger buffer size, however,
helps to relieve the congestion to some extend.

Parameters of MAC-Layer In Figure 5-4, while keep-
ing the node density fixed, we vary the total number of
nodes and topology size to study the effect of different hop
lengths. Since the nodes constantly move in the topology,
the hop number is an average over the entire simulation run.
We observe that for hop length greater than 9, the poten-
tial improvement space for TCP NewReno is rather limited,
i.e., TCP is not efficient in long-hop transmission in ad hoc
networks.
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Figure 5. Comparison of TCP NewReno and R-TCP under some special cases. Left to Right: 1) Advertised Window Size; 2)
Using AODV as Routing Protocol; 3) Buffer Size at each node; 4) Average Hop Number of data path.

3.7 Simulation Summary

In the above simulations, we study TCP performance in
wireless ad hoc networks with the assistance of R-TCP. We
first study the impact of each individual factor of conges-
tion, mobility and channel error. We observe that TCP does
not respond efficiently to network disconnections. Node
mobility has the most significant impact on TCP perfor-
mance. On the other hand, congestion and channel error
do not have significant negative effect on TCP (with less
than 10% performance drop compared with R-TCP). This
confirms that channel error is shielded pretty well by the re-
transmissions of 802.11 MAC protocol and routing protocol
such as DSR.

Then we simulate the composite effects of congestion,
mobility and channel error on TCP performance. We ob-
serve that as the mobility speed varies, the relative perfor-
mance degradation ranges from around 0% in zero mobil-
ity case to 1000% in extremely high-mobility case (20 m/s).
Also the effect of mobility on TCP increases as the mobility
speed increases. This is true for both TCP NewReno and R-
TCP. The reason is that, at extremely high-mobility cases,
the routing protocol becomes performance bottleneck. In
addition, we find that congestion tends to reduce the perfor-
mance gap introduced by mobility.

Finally, in the special cases we study, we observe that
TCP NewReno has a large room to be improved compared
with R-TCP. The performance gain range from 10% in Fig-
ure 5-4, when average hop number is 9 hops between source
and receiver; up to 700% in Figure 5-1 where the advertised
window size is 32 packets.

4 Conclusions and Future Work

In this paper, we focus on TCP performance in wireless
ad hoc networks. We consider how much TCP performance
degrades in such networks. We also analyze the impact of
different characters of ad hoc networks on TCP through-
put. To this end, we design and implement a reference TCP
protocol in ns-2, which serves as a benchmark in our exper-
iments and analysis.

In the simulation, we show the performance gap between
NewReno and R-TCP ranges from 0% to 1000%. Among
factors of congestion, mobility and channel errors, we found
that mobility-induced events, especially disconnection and
reconnection, have the most significant effect on the per-
formance of TCP NewReno. For example, when mobility
is 20 m/s, the performance drop is 1000%. As to chan-
nel error, low channel error could be masked by retransmis-
sions at link layer, therefore only less than 10% throughput
decrease is observed in this case. However, heavy chan-
nel error could quickly stall NewReno performance even in
medium mobility speed. This again causes 1000% perfor-
mance gap between NewReno and R-TCP.

We believe that designing this R-TCP quantifies an
achievable performance upper bound for any future TCP
design in mobile ad hoc networks. In the future, we plan
to design practical TCP modifications in ad hoc networks to
fill the performance gap between TCP and R-TCP.
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