
DBridge: Translating Imperative Code to SQL

K. Venkatesh Emani Tejas Deshpande∗

Karthik Ramachandra† S. Sudarshan

Indian Institute of Technology, Bombay
{venkateshek, sudarsha}@cse.iitb.ac.in, {tejasdeshpande111, karthik.s.ramachandra}@gmail.com

ABSTRACT
Application programs that access data located remotely (such
as in a database) often perform poorly due to multiple net-
work round trips and transfer of unused data. This situa-
tion is exacerbated in applications that use object-relational
mapping (ORM) frameworks such as Hibernate, as devel-
opers tend to express complex query logic using imperative
code, resulting in poor performance.

DBridge is a system for optimizing data access in database
applications by using static program analysis and program
transformations. Recently, we incorporated a new suite of
optimization techniques into DBridge. These techniques op-
timize database application programs by identifying rela-
tional operations expressed in imperative code, and translat-
ing them into SQL. In this demonstration, we showcase these
techniques using a plugin for the IntelliJ IDEA Java IDE as
the front end. We show the performance gains achieved by
employing our system on real world applications that use
JDBC or Hibernate.

1. INTRODUCTION
Database applications are written using a mix of declara-

tive SQL queries, and imperative code written in languages
such as Java. Developers of database applications express
parts of relational logic in imperative code. In applications
that use object-relational mapping (ORM) frameworks such
as Hibernate, this is a particularly frequent occurrence, since
developers working on objects find it easier to write com-
plex query logic using imperative code, rather than writing
queries. However, this practice can be inefficient because of
multiple network round trips due to iterative invocation of
queries, and transfer of unused data.

As a step towards addressing this issue, in our recent pa-
per [3], we proposed techniques for automatically rewriting
database applications by identifying various relational oper-
ations performed in imperative code, and translating them

∗Current affiliation: Microsoft IDC
†Current affiliation: Microsoft Gray Systems Lab

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3058747

into equivalent SQL queries. Our techniques can detect op-
erations in imperative code such as conditional execution,
nested loops, and collection of results into an aggregate vari-
able, and translate them into SQL queries making use of
selections, joins, projections, and aggregations, while pre-
serving the original program semantics. We refer to this
approach as equivalent SQL translation.

Equivalent SQL translation pushes computation to the
data location, and enables the query planner to exploit tech-
niques such as join algorithms, indexes, materialized views
etc. that could not be used on the original queries. Conse-
quently, application performance is improved, as the number
of database round trips, the query execution time, and the
amount of data transferred are reduced. Results from [3]
show significant performance improvements, up to an order
of magnitude in some cases. Compared to other systems
with similar goals such as [2], equivalent SQL translation
using our system (a) is faster and cheaper, and (b) supports
SQL translation of operations (such as some implementa-
tions of group by) that other systems are unable to trans-
late.

In this demonstration, we will showcase equivalent SQL
translation for database applications written in Java that
use JDBC or Hibernate to access the database. The front
end to our system is a plugin in the IntelliJ IDEA develop-
ment environment (IntelliJ IDEA1 is a popular IDE similar
to Eclipse and Netbeans). The plugin provides a simple
graphical user interface (GUI) to enable the user to con-
figure and use our system. We discuss the features of our
plugin in Section 3.

Our equivalent SQL translation system is part of the DBri-
dge2 [1] system developed at IIT Bombay, which optimizes
data access in database applications by leveraging static pro-
gram analysis and program transformations. DBridge per-
forms multiple optimizations in imperative programs with
embedded SQL queries. These optimizations, described in
[4], include (a) batching, i.e., rewriting programs to replace
multiple calls to a parameterized query by a batched call
to a correspondingly rewritten query, (b) prefetching query
results at the earliest possible location in the program while
avoiding wasteful prefetches, (c) asynchronous query sub-
mission to enable overlap of query and program execution,
and (d) hybrid optimizations that combine the above three
approaches. These optimizations provide significant perfor-
mance improvements; we refer the reader to [4] for more
details. A previous demonstration of DBridge [1] showcased

1https://www.jetbrains.com/idea/
2http://www.cse.iitb.ac.in/infolab/dbridge/

1663

1 Set<Project> getUnfinishedProjects() {
2 Set<Project> unfinishedP = new HashSet<Project>();
3 List<Project> projects = projectDao.

getAllProjects();
/* getAllProjects() internally uses Hibernate APIs
to fetch all rows of Project table */

4 for (Project project : projects)
5 if (!(project.getIsFinished()))
6 unfinishedP.add(project);

7 return unfinishedP; }

Figure 1: Code performing filter inside application

batching. In this demonstration, we will focus on equivalent
SQL translation (described in [3]), and use the opportunity
to showcase other additions to DBridge since [1]. In the re-
mainder of this paper, we will use the term DBridge to refer
specifically to the equivalent SQL translation component of
DBridge, unless explicitly specified otherwise.

2. OVERVIEW
In this section, we first discuss the capabilities of our sys-

tem through examples, and then discuss the underlying tech-
niques and plugin architecture, briefly.

2.1 Examples of SQL Translation
Our system is able to rewrite complex real world programs

containing a mix of one or more of the following relational
operations implemented in imperative code.

Selections: DBridge identifies filters on result attributes
expressed using conditional imperative constructs such as
if, and pushes them into the query as a selection. For ex-
ample, consider the code fragment shown in Figure 1, which
is adapted from an open source application [6]. It computes
the list of unfinished projects by fetching all tuples and fil-
tering them inside the application. DBridge extracts the
following SQL query from the above program:
"select * from Project where isFinished <> 1"

The condition !(project.getIsFinished()) from line 5 in
Figure 1 is translated as the where clause condition in the
extracted query.

Projections: DBridge generates SQL queries from an in-
termediate representation (refer Section 2.2). In the process,
query result attributes that are fetched in the original code
but not used subsequently, are eliminated.

Joins: Joins are implemented in imperative code using
nested loops over query results. DBridge identifies and trans-
lates such joins to SQL. However, in applications using ORM
frameworks, joins may also be implicitly specified. This is
done by specifying associations (one of many-to-many, one-
to-many, or many-to-one) between attributes of mapped
classes. For example, consider the program shown in the
left pane of Figure 2, which is a screenshot from one of the
executions of our system. This function fetches all RoleDef-
inition objects mapped to a particular Guidance object.
A one-to-many join association has been specified through
ORM mapping, so accessing the roleDefinitions attribute
in a Guidance object results in an implicit join. The right
pane of Figure 2 shows how DBridge has identified this im-
plicit join and translated it into an appropriate SQL query.

The above example can be modified to iterate over a set of
all Guidances, in which case, the SQL query generated by
DBridge would include a join with the set of Guidances,
which would be significantly more efficient than the original
program.

Figure 2 has a method saveOrUpdate (line 22), which per-
forms a database update. This illustrates another capability
of DBridge. Although DBridge currently does not translate
database updates to SQL, DBridge can translate reads to
SQL as long as the interleaved updates do not introduce
any write-read dependencies on the reads, and the reads do
not span transaction boundaries.

Aggregations: DBridge identifies aggregation inside cur-
sor loops, and replaces it with a query using an SQL ag-
gregate function, if such a function is available. In some
cases, if there is no equivalent aggregate SQL function, it
may be possible to use a custom aggregation function. In
other cases, translation into SQL fails. DBridge handles fail-
ures gracefully, as discussed in Section 3. DBridge is able
to translate a common implementation of group by using
nested loops, where the inner loop computes aggregation for
each value of the outer loop.

Other operations: DBridge can identify scalar computa-
tions performed on attributes of query results in imperative
code, and push these computations into SQL when possible.
DBridge can detect and translate some other operations that
can be expressed using SQL such as checking for existence
of a tuple using a loop over query results, combining nested
scalar queries inside a cursor loop (commonly encountered
when data is organized as a star schema), etc. We refer the
reader to Appendix B of [3] for more details. Similar to
database query optimizer rules, more transformation rules
can be added to DBridge easily, to enable inference of other
relational operations from imperative code.

Note that in this paper, we show translations from imper-
ative code to SQL. However, some users may prefer trans-
lation into HQL (Hibernate Query Language), as it has the
advantage of being independent of the database engine being
used. DBridge is able to generate HQL queries as well.

2.2 Underlying Techniques
We now present a brief overview of our techniques for

equivalent SQL translation, described in detail in [3].
To detect potential opportunities for rewriting to SQL,

DBridge primarily targets cursor loops, i.e., loops that iter-
ate over a collection. Our examples in this paper use loops
that iterate over collections that can be inferred as direct or
indirect results of a database query. These are a special case
of cursor loops. Generic cursor loops are handled similarly,
after some preprocessing.

Given a source program (such as Figure 1) consisting of
imperative code and embedded SQL, DBridge uses infor-
mation about inter-statement data dependencies to iden-
tify program variables (like unfinishedP) whose computa-
tion inside cursor loops can be replaced by an SQL query.
DBridge represents modifications to such a variable inside
the loop using an algebraic intermediate representation (IR).

The IR for unfinishedP from Figure 1 is shown in Fig-
ure 3(a). Our IR is represented as a DAG. Edges are directed
from an operator towards its operands, i.e., downwards in
Figure 3 (directions have been omitted in the figure, for read-
ability). The fold operator is used to represent cursor loops
algebraically. The semantics of fold operator correspond to

1664

Figure 2: Screenshot showing rewrite of implicit join in Hibernate (Left – original, Right – rewritten)

Figure 3: IR for unfinishedP

the higher order function fold in functional programming.
Intuitively, in our IR, the first child of fold represents com-
putation inside the loop body, the second child represents
the initial value of the variable before entering the loop, and
the third child represents the cursor loop query.

The ‘?’ (question mark) operator is used to denote con-
ditional execution. All arithmetic, logical, and extended re-
lational algebra operators (including group by, sorting and
duplicate elimination), and operators for important library
functions (such as the set_insert operator to represent in-
sertion into a set) are available in our IR, to enable rep-
resentation of real world programs. We believe that this
high level understanding of our IR is sufficient to follow this
demonstration. We omit details for lack of space, and refer
the reader to [3] for a complete discussion of our IR.

Transformations on the IR enable relational operations in
the loop body to be identified and pushed into the relational
algebra query. This can be seen in Figure 3(b), where com-
putation inside the query increases as the selection logic is
pushed into the query. Translating the transformed IR into
SQL, and rewriting the program to use the extracted query
gives the target program.

Note that DBridge is able to identify relevant code in the
nested function call on line 3 of Figure 1, and represent it in

Figure 4: Plugin Architecture

the IR, along with code from the caller location. In general,
DBridge can handle arbitrary levels of function call nesting
without recursion.

2.3 Plugin Implementation
Figure 4 describes the architecture of our plugin. Our

plugin is built on top of DBridge and IntelliJ IDEA. The in-
put source program is compiled and the bytecode is passed
to DBridge. DBridge leverages the Soot Java optimization
framework [5], which translates the bytecode into Jimple –
a convenient intermediate representation for program trans-
formations. We use the Dava decompiler provided by Soot
to convert transformed Jimple code back to Java.

However, comments and annotations from the original
program are not preserved by Dava, and for loops are trans-
lated as while loops. So, we perform post processing of the
decompiled file (using APIs provided by IntelliJ IDEA) to
restore javadoc comments, annotations, and the original for
loops, when those parts of the code were not modified by
DBridge. Currently, if some part of the code is modified, we
replace the function in the original program containing that
code with the corresponding function in the rewritten pro-
gram. We are working on extending our implementation to
replace only the modified lines, instead of an entire function.

3. DEMONSTRATION
In this section, we describe our demonstration setup. Our

demonstrations will showcase various features of our plugin
for rewriting Java programs to use SQL, as well as the per-
formance benefits of the transformed code.

1665

Figure 5: DBridge Rewrite Menu

Figure 6: DBridge Preferences

The DBridge SQL translation plugin can be installed in
the IntelliJ IDEA Java IDE, as a third party plugin. This
adds a new main menu item in IntelliJ titled “DBridge”.
This is shown in Figure 5. The plugin identifies the cur-
rently active file from the IDE editor to be rewritten. Users
can choose to rewrite the program, and do one of the follow-
ing. (a) Compare the rewritten file with the original. This
invokes IntelliJ’s diff-viewer, a screenshot of which is shown
in Figure 2. This option is provided by the “Rewrite and
View” sub-menu item. (b) Directly replace the original file.
This option is provided by the “Rewrite and Replace” sub-
menu item. The “Restore” option allows the user to restore
a file to its state before rewriting. “Rewrite and Replace”
and “Restore” together enable the user to easily switch be-
tween the rewritten program and the original program, to
facilitate testing and performance measurements.

Finally, the “Preferences” sub-menu opens a dialog to con-
figure DBridge. This dialog is shown in Figure 6. For equiva-
lent SQL translation, users can select one of two modes: Ag-
gressive and Conservative. In the Aggressive mode, the plu-
gin will attempt to rewrite all methods unless excluded us-
ing the annotation @NoDBridge. In the Conservative mode,
only methods annotated with @DBridge will be considered

for rewriting. In Figure 2, we ran the plugin in Conserva-
tive mode, so getRoleDefinitions() was annotated with
@DBridge for rewriting. Note that DBridge may attempt to
rewrite some parts of the code but fail, if the required pre-
conditions are not met. In this case, that part of the code
remains unchanged. Other parts of the code can still be
attempted for rewrite as usual.

The dialog in Figure 6 also allows users to enable other op-
timizations in DBridge (discussed in Section 1), and config-
ure them. The various optimizations in DBridge use source
to source transformations and preserve program semantics,
so multiple optimizations can be applied one after another
on a single program.

Our demonstrations will use a number of Java programs
from real world applications that use Hibernate and JDBC
adapted from open source applications. Our experimental
evaluation [3] shows that rewriting with SQL using DBridge
is fast, and can provide significant performance improve-
ments. For instance, for the program shown in Figure 1,
using 20% selectivity and 100000 rows, the rewritten pro-
gram ran 2.3x faster, and transferred 2.5x lesser data. (We
omit further details on evaluation due to lack of space, and
refer the reader to [3].) We will allow users to rewrite parts
of example applications, and run the original and rewritten
applications, to compare the execution times and amount of
data transferred. We also invite the audience to play with
DBridge SQL translation plugin using their own programs.

4. CONCLUSION
In this demonstration, we showcased (a) the DBridge sys-

tem for rewriting database applications programs to use
SQL, as a plugin for a popular Java IDE, (b) performance
gains due to such rewriting. We plan to release our plugin,
and believe that it will help generate efficient implementa-
tions with minimal developer effort.

We are developing a framework that considers alternative
rewrites of a program, and chooses the optimal rewrite in
a cost based manner. We also plan to extend our system
to other languages such as R and JavaScript ORMs, in the
future.

Acknowledgments: This work is partially supported
by a Ph.D. fellowship from TCS.

5. REFERENCES
[1] M. Chavan, R. Guravannavar, K. Ramachandra, and

S. Sudarshan. DBridge: A program rewrite tool for set-
oriented query execution (demo). In ICDE, 2011.

[2] A. Cheung, A. Solar-Lezama, and S. Madden. Optimi-
zing database-backed applications with query synthesis.
PLDI, 2013.

[3] K. V. Emani, K. Ramachandra, S. Bhattacharya, and
S. Sudarshan. Extracting Equivalent SQL from Impera-
tive Code in Database Applications. SIGMOD, 2016.

[4] K. Ramachandra, M. Chavan, R. Guravannavar, and
S. Sudarshan. Program transformations for
asynchronous and batched query submission. TKDE
‘15, 27(2):531–544.

[5] Soot: A Java Optimization Framework
http://www.sable.mcgill.ca/soot.

[6] Wilos Orchestration Software
http://www.ohloh.net/p/6390.

1666

