

IST AUSTRIA

Institute of Science and Technology

ABSTRACT

Continuous-time Markov chains (CTMCs) with their rich theory and efficient simulation algorithms have been used successfully in modelling stochastic processes in diverse areas such as computer science, physics, and biology. However, systems that comprise noninstantaneous events cannot be accurately and efficiently modelled with CTMCs.

So, we develop the idea of delayed CTMCs and use it specifically in the study of **Genetic Regulatory Circuits** (GRCs).

CONTACT

VIPUL SINGH B.TECH 3rd YEAR COMPUTER SCIENCE AND ENGINEERING, IIT BOMBAY Phone: 9820658119 E-mail: vipulsingh1991@gmail.com

THE PROBLEM

- distributions

- Decay from mature state to 0-age state
- The two approximations:
 - Aging in discrete steps
- $\lim \delta \rightarrow 0$ corresponds to continuous time

An Error Ananysis of the Delayed Continous Time Markov Chain model Thomas Henzinger¹; Ashutosh Gupta¹; Vipul Singh²

¹IST Austria, ²IIT Bombay

APPROACH

from systems $S_0, S_1, S_2, \dots, S_n$ with weights $\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n$. • So, we focus on the system S_0 now.

THE ANALYSIS

• At time *kd*, let prob. mass in state n be x

- Time $(kd+\Delta)$: state 0 has $(1-(1-\lambda\delta)^N)x$.
- Time $(kd+(n-1)\Delta)$: state (n-1) has prob. mass (1-(1-λδ)^N)x.
- This mass re-enters n at (k+1)d.
- Prob. Mass that stays in 'n' throughout = $(1 \lambda \delta)^{n N} x$.
- So, prob. Mass in n at (k+1)d = $((1-\lambda\delta)^{n} + (1-(1-\lambda\delta)^{N}))x = p_{o}x \text{ (say)}$
- For continuous-time, use $p_{ct} = \lim_{\delta \to 0} p_0 = e^{-\lambda d} + 1 - e^{-\lambda \Delta}$
- Relative error = 1–(approx. / true value)
- At time *d*, relative error, R.E. = $1 - (p_o/p_{ct})^{(k-1)}$

CONCLUSIONS

- 1. Shown that the delayed CTMC model computes within an error bound for simple 1-molecule system.
- 2. Optimum discretization exists both in ageing of molecule as well as time.
- 3. Wish to achieve such optimality points for more complex systems too.

REFERENCES

Delayed Continuous-Time Markov Chains for Genetic Regulatory Circuits - Calin C. Guet, Ashutosh Gupta, Ali Sezgin, Thomas A. Henzinger, Maria Mateescu (IST Austria)