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Introduction

• Revisiting question of NP=P?

• Diagonalization proof used to show that Halting 

Problem is undecidable

• Can we use it to prove that NP=P or NP  P?



Diagonalization

• Existence of representation of TM by string

• Ability of a universal Turing Machine to 

simulate any other w/o much overhead in 

running time or space



Relativization & Oracle

• Turing Machine provided with some 
information for “free”

– Concept of “Oracle” for a language

– Black box that answers membership of a string 
in the given language in one step

• Information affects the outcome of TM

• Oracle TM solves some problems easier 



Definition

• TM M with special r/w tape (oracle tape)

• 3 special states: qquery, qyes, qno

• Language O used as oracle for M

• On entering qquery, moves to qyes if qO, 

else moves to qno.

• Query counts as 1 step



PO and NPO

• Oracle Turing Machine MA tells membership of 
given string in A in a single computation step.

• PA 

– Class of languages decidable with a polynomial time 
TM MA that uses oracle A.

• NPA 

– Class of languages decidable with a nondeterministic 
polynomial time TM MA that uses oracle A.



Examples of “Oracle”

• Consider an oracle for SAT

– Solves SAT problem in single step, for any size Boolean formula. 

• With the help of an oracle for SAT, a TM can solve any NP 
problem in polynomial time 

– Regardless of whether NP=P, every NP problem is polynomial 
time reducible to SAT



Examples of “Oracle”

• SAT’  PSAT

– DTM makes 1 call to SAT oracle and inverts answer

• If the oracle O  P, then PO=P 

– Replace the oracle by its actual computations (will be poly-time), 
hence still a poly-time DTM



EXPCOM

• { < M,x,1n  > : M outputs 1 on x within 2n  steps}

• We show that PEXPCOM = NPEXPCOM

• EXP  PEXPCOM and    NPEXPCOM  EXP

(i) Exponential computation in single step

(ii)Enumerate all choices of NTM and answer queries, overall 
exponential time only



Relativizing Results

• Can represent oracle TM as string

• Use this to simulate on UTM with access to O

• So, any result about TMs or complexity classes 

that uses only diagonalization holds for all oracle 

TMs. These are called relativizing results.



Limits of Diagonalization

• Goal of BGS theorem(theorem 9.19)  - to prove 

that Diagonalization technique is unlikely to 

resolve the P versus NP question.

• Key ideas

– Diagonalization is simulation of one TM by another.

– Theorem proved by TMs using the Diagonalization

method would still hold if both the machines were 

given the same oracle.



Key ideas(contd.)

• If P NP is provable using Diagonalization 

method, then even if assistance of an oracle is 

given then they should be different.

– Does not work because BGS theorem proves that there 

exists an oracle B such that PB =NPB 

• If P = NP is provable using Diagonalization 

method, then even if assistance of an oracle is 

given then they should be same.

– Does not work because BGS theorem proves that there 

exists an oracle A such PA  NPA



Proof 

• Proof Idea

– Oracle A exists whereby PA =NPA

– Oracle B exists whereby PB  NPB

• Proof of existence of oracle A

– Let A be EXPCOM

– PEXPCOM =NPEXPCOM = EXP 



Proof of existence of oracle A

• Goals 

– Design an oracle B such that certain language UB   in 

NPB  provably requires brute force search and hence UB 

cannot be in PB. 

1. LB  NPB 

1. LB  PB

• Construct B such that no polynomial time turing machine 

M1, M2……..solves LB



Goal 1: Identifying Language UB

• Let UB be the unary language

– U
B 

= { 1n : some string of length n is in B }

– i.e., a string is in LA iff there exists some string 
of the same length that is in A.

– Intuition:

• There are 2n  strings of length n

• For a large enough n (i.e. 2n > ni) , a polynomial 
time deterministic Turing machine cannot check the 
status of all strings of length n. 



Goal 2: U
B
 NPB 

• Given a string 1n,

– Guess a string x of length n and verify that

– Ask the oracle “Is the string x is in B”

• Can be achieved in one step by the oracle for B

– Note that NPB can guess on all possible 2n 

possible input words to B.

– Result true for all languages B
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• Construct B such that no polynomial time turing machine solves 

LB  in polytime (more generally in o(2n ))

– All possible oracle turing machines represented by M
i

(M
i 
is 

binary expansion of integer i )  for all i N

– Note that these turing machines are independent of Oracle

– Construct B in stages where stage i ensures M
i
B does not 

decide U
B 

in time o(2n), WLOG 2n /10 

– Start with B being empty, at each stage B determines the 

status of only finite number of strings

– B has an underlying map from strings to yes, no 

undetermined. All undetermined strings are answered no.

Goal 3: UB  PB



• Stage i :

Goal 3: UB  PB



• Stage i :

– Let n be greater than the longest string determined by B

Goal 3: UB  PB



• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n  as input to M
i

Goal 3: UB  PB

`



• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n  as input to M
i

– M
i  

checks for 2n/10 strings all of which answer “No”

Goal 3: UB  PB

`



• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n  as input to M
i

– M
i  

checks for 2n/10 strings all of which answer “No”

– Behaviour of M
i
is different from B.

Goal 3: UB  PB

`



• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n  as input to M
i

– M
i  

checks for 2n/10 strings all of which answer “No”

– Behaviour of M
i
is different from B.

– If (M
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answers “Yes”), set all length n strings in B as “No”
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• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n  as input to M
i

– M
i  

checks for 2n/10 strings all of which answer “No”

– Behaviour of M
i
is different from B.

– If (M
i  

answers “Yes”), set all length n strings in B as “No”

– If (M
i  

answers “No”), set one length n string not checked by  

B as “Yes”

– M
i  

answers opposite to U
B

for 1n, M
i
does not decide U

B

• True for all Oracle Tms

• Generalizes to DTIMEB(f(n)), f(n) = o(2n)

Goal 3: UB  PB
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Significance of BGS theorem

• Given the above theorem, now we get back to the original 

question which was whether diagonalization can resolve P vs 

NP.

• Suppose a resolution of P vs NP is given using only the 

properties of diagonalization (properties I and II listed above), 

every statement about TM's in the resolution proof will also 

hold for oracle TM's (for any oracle).

• Since BGS theorem shows the existence of oracles A and B 

such that PA = NPA and PB ≠ NPB, we can say that P = NP can 

neither be proved nor disproved using diagonalization 

arguments. 

• Hence any resolution of the P vs NP problem must use a non-

relativizing fact.
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Relativizing in Complexity Theory

• Many results in complexity theory relativize. 

• However, there do exist non-relativizing results.

• Examples: PCP theorem and IP = PSPACE

• Not yet known how to use these non-relativizing

techniques to resolve P vs NP.

• BGS just tells us that if you ever hope to resolve P vs

NP, you had better use a non-relativizing fact in your 

attempt to resolve.
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What is behind relativization ?

• A deeper look at the concept of relativization.

• Notion of relativization was inspired from 

independence results.

• Independence results in mathematical logic are results 

which showed that certain natural statements can 

neither be proved nor disproved in a particular set of 

axioms.



Independence Results

• Independence results showed that certain natural 

mathematical statements can neither be proved nor 

disproved in a particular set of axioms.

• Two well known examples of independence results.

• Eg 1: Euclid’s 5th postulate is independent from the 

first four.



Euclid’s Postulates

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight 

line.

3. Given any straight lines segment, a circle can be drawn having the 

segment as radius and one endpoint as center.

4. All Right Angles are congruent.

5. If two lines are drawn which intersect a third in such a way that the 

sum of the inner angles on one side is less than two Right Angles, 

then the two lines inevitably must intersect each other on that side if 

extended far enough. This postulate is equivalent to what is known 

as the Parallel Postulate.



Non-Euclidean Geometries

• The fifth postulate is independent from the first four. i.e it 

can neither be proved nor disproved using the first four 

postulates.

• If we assume the fifth postulate, we get a certain set of 

axioms – Euclidean Geometry

• If we assume the fifth postulate is not true, we get a 

different set of axioms – Non-Euclidean geometries.



Another Example

• Continuum hypothesis is independent from 

axioms of Zermelo-Fraenkel set theory.



Logical Independence vs Relativization

• BGS theorem shows that the statement P = NP can 

neither be proved nor disproved using relativizable

facts.

• Consider a system of axioms which consists of all 

and only those facts about P which relativize.

• P = NP is independent from this set of axioms.

• Such an set (axiomatic system) was actually given 

by Arora, Impagliazzo and Vazirani [AIV93].
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Set of non-relativizing facts ?

• How do we extend the above axiomatic system to 

allow it to prove non-relativizing results ?

• One idea: Whenever a non-relayivizing result is 

encountered, assume it is true. (Like we did in 

constructing Euclidean geometry)

• A more conservative approach would ask the 

following question.



• Is there a single non-relativizing fact which 

is general enough so as to imply all known 

non-relativizing results ?



The Cook-Levin Theorem!

• Surprisingly, it turns out that there is such a 

non-relativizing fact.

• This is essentially the Cook-Levin Theorem



Crux of Cook-Levin: Computation is 

Local

• Locality of computation: Each basic step of a Turing 

machine only examines and modifies a constant number of 

tape locations.

• The article mentioned above [AIV93] describes a few 

ways to formalize the fact that computation if local.

• This means that any resolution of P vs NP will in some 

way of the other use the fact that TM computations are 

local.

• How close does knowing this fact take us to resolving P vs

NP ?



How big a leap have we made 

towards resolving P vs NP ?

No bigger than the leap made by basic axioms 

of arithmetic towards proving Fermat’s last 

theorem!!



Conclusion
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