
ORACLE MACHINES

AND THE

LIMITS OF DIAGONALIZATION

CS 721

Ashwin Paranjape

Dikkala Sai Nishanth

Vipul Singh

(slides adapted from Vaishali Athale

CSE860, Michigan State Univ.)

Overview

• Introduction

• Concept of “Oracle”

• The Limits of Diagonalization

• Logical independence vs relativization

Introduction

• Revisiting question of NP=P?

• Diagonalization proof used to show that Halting

Problem is undecidable

• Can we use it to prove that NP=P or NP  P?

Diagonalization

• Existence of representation of TM by string

• Ability of a universal Turing Machine to

simulate any other w/o much overhead in

running time or space

Relativization & Oracle

• Turing Machine provided with some
information for “free”

– Concept of “Oracle” for a language

– Black box that answers membership of a string
in the given language in one step

• Information affects the outcome of TM

• Oracle TM solves some problems easier

Definition

• TM M with special r/w tape (oracle tape)

• 3 special states: qquery, qyes, qno

• Language O used as oracle for M

• On entering qquery, moves to qyes if qO,

else moves to qno.

• Query counts as 1 step

PO and NPO

• Oracle Turing Machine MA tells membership of
given string in A in a single computation step.

• PA

– Class of languages decidable with a polynomial time
TM MA that uses oracle A.

• NPA

– Class of languages decidable with a nondeterministic
polynomial time TM MA that uses oracle A.

Examples of “Oracle”

• Consider an oracle for SAT

– Solves SAT problem in single step, for any size Boolean formula.

• With the help of an oracle for SAT, a TM can solve any NP
problem in polynomial time

– Regardless of whether NP=P, every NP problem is polynomial
time reducible to SAT

Examples of “Oracle”

• SAT’  PSAT

– DTM makes 1 call to SAT oracle and inverts answer

• If the oracle O  P, then PO=P

– Replace the oracle by its actual computations (will be poly-time),
hence still a poly-time DTM

EXPCOM

• { < M,x,1n > : M outputs 1 on x within 2n steps}

• We show that PEXPCOM = NPEXPCOM

• EXP  PEXPCOM and NPEXPCOM  EXP

(i) Exponential computation in single step

(ii)Enumerate all choices of NTM and answer queries, overall
exponential time only

Relativizing Results

• Can represent oracle TM as string

• Use this to simulate on UTM with access to O

• So, any result about TMs or complexity classes

that uses only diagonalization holds for all oracle

TMs. These are called relativizing results.

Limits of Diagonalization

• Goal of BGS theorem(theorem 9.19) - to prove

that Diagonalization technique is unlikely to

resolve the P versus NP question.

• Key ideas

– Diagonalization is simulation of one TM by another.

– Theorem proved by TMs using the Diagonalization

method would still hold if both the machines were

given the same oracle.

Key ideas(contd.)

• If P NP is provable using Diagonalization

method, then even if assistance of an oracle is

given then they should be different.

– Does not work because BGS theorem proves that there

exists an oracle B such that PB =NPB

• If P = NP is provable using Diagonalization

method, then even if assistance of an oracle is

given then they should be same.

– Does not work because BGS theorem proves that there

exists an oracle A such PA  NPA

Proof

• Proof Idea

– Oracle A exists whereby PA =NPA

– Oracle B exists whereby PB  NPB

• Proof of existence of oracle A

– Let A be EXPCOM

– PEXPCOM =NPEXPCOM = EXP

Proof of existence of oracle A

• Goals

– Design an oracle B such that certain language UB in

NPB provably requires brute force search and hence UB

cannot be in PB.

1. LB  NPB

1. LB  PB

• Construct B such that no polynomial time turing machine

M1, M2……..solves LB

Goal 1: Identifying Language UB

• Let UB be the unary language

– U
B

= { 1n : some string of length n is in B }

– i.e., a string is in LA iff there exists some string
of the same length that is in A.

– Intuition:

• There are 2n strings of length n

• For a large enough n (i.e. 2n > ni) , a polynomial
time deterministic Turing machine cannot check the
status of all strings of length n.

Goal 2: U
B
 NPB

• Given a string 1n,

– Guess a string x of length n and verify that

– Ask the oracle “Is the string x is in B”

• Can be achieved in one step by the oracle for B

– Note that NPB can guess on all possible 2n

possible input words to B.

– Result true for all languages B

Goal 3: UB  PB

• Construct B such that no polynomial time turing machine solves

LB in polytime (more generally in o(2n))

Goal 3: UB  PB

• Construct B such that no polynomial time turing machine solves

LB in polytime (more generally in o(2n))

– All possible oracle turing machines represented by M
i

(M
i
is

binary expansion of integer i) for all i N

Goal 3: UB  PB

• Construct B such that no polynomial time turing machine solves

LB in polytime (more generally in o(2n))

– All possible oracle turing machines represented by M
i

(M
i
is

binary expansion of integer i) for all i N

– Note that these turing machines are independent of Oracle

• Construct B such that no polynomial time turing machine solves

LB in polytime (more generally in o(2n))

– All possible oracle turing machines represented by M
i

(M
i
is

binary expansion of integer i) for all i N

– Note that these turing machines are independent of Oracle

– Construct B in stages where stage i ensures M
i
B does not

decide U
B

in time o(2n), WLOG 2n /10

Goal 3: UB  PB

• Construct B such that no polynomial time turing machine solves

LB in polytime (more generally in o(2n))

– All possible oracle turing machines represented by M
i

(M
i
is

binary expansion of integer i) for all i N

– Note that these turing machines are independent of Oracle

– Construct B in stages where stage i ensures M
i
B does not

decide U
B

in time o(2n), WLOG 2n /10

– Start with B being empty, at each stage B determines the

status of only finite number of strings

– B has an underlying map from strings to yes, no

undetermined. All undetermined strings are answered no.

Goal 3: UB  PB

• Stage i :

Goal 3: UB  PB

• Stage i :

– Let n be greater than the longest string determined by B

Goal 3: UB  PB

• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n as input to M
i

Goal 3: UB  PB

`

• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n as input to M
i

– M
i

checks for 2n/10 strings all of which answer “No”

Goal 3: UB  PB

`

• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n as input to M
i

– M
i

checks for 2n/10 strings all of which answer “No”

– Behaviour of M
i
is different from B.

Goal 3: UB  PB

`

• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n as input to M
i

– M
i

checks for 2n/10 strings all of which answer “No”

– Behaviour of M
i
is different from B.

– If (M
i

answers “Yes”), set all length n strings in B as “No”

Goal 3: UB  PB

• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n as input to M
i

– M
i

checks for 2n/10 strings all of which answer “No”

– Behaviour of M
i
is different from B.

– If (M
i

answers “Yes”), set all length n strings in B as “No”

– If (M
i

answers “No”), set one length n string not checked by

B as “Yes”

Goal 3: UB  PB

• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n as input to M
i

– M
i

checks for 2n/10 strings all of which answer “No”

– Behaviour of M
i
is different from B.

– If (M
i

answers “Yes”), set all length n strings in B as “No”

– If (M
i

answers “No”), set one length n string not checked by

B as “Yes”

– M
i

answers opposite to U
B

for 1n, M
i
does not decide U

B

Goal 3: UB  PB

• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n as input to M
i

– M
i

checks for 2n/10 strings all of which answer “No”

– Behaviour of M
i
is different from B.

– If (M
i

answers “Yes”), set all length n strings in B as “No”

– If (M
i

answers “No”), set one length n string not checked by

B as “Yes”

– M
i

answers opposite to U
B

for 1n, M
i
does not decide U

B

• True for all Oracle Tms

Goal 3: UB  PB

• Stage i :

– Let n be greater than the longest string determined by B

– Give 1n as input to M
i

– M
i

checks for 2n/10 strings all of which answer “No”

– Behaviour of M
i
is different from B.

– If (M
i

answers “Yes”), set all length n strings in B as “No”

– If (M
i

answers “No”), set one length n string not checked by

B as “Yes”

– M
i

answers opposite to U
B

for 1n, M
i
does not decide U

B

• True for all Oracle Tms

• Generalizes to DTIMEB(f(n)), f(n) = o(2n)

Goal 3: UB  PB

Significance of BGS theorem

• Given the above theorem, now we get back to the original

question which was whether diagonalization can resolve P vs

NP.

Significance of BGS theorem

• Given the above theorem, now we get back to the original

question which was whether diagonalization can resolve P vs

NP.

• Suppose a resolution of P vs NP is given using only the

properties of diagonalization (properties I and II listed above),

every statement about TM's in the resolution proof will also

hold for oracle TM's (for any oracle).

Significance of BGS theorem

• Given the above theorem, now we get back to the original

question which was whether diagonalization can resolve P vs

NP.

• Suppose a resolution of P vs NP is given using only the

properties of diagonalization (properties I and II listed above),

every statement about TM's in the resolution proof will also

hold for oracle TM's (for any oracle).

• Since BGS theorem shows the existence of oracles A and B

such that PA = NPA and PB ≠ NPB, we can say that P = NP can

neither be proved nor disproved using diagonalization

arguments.

Significance of BGS theorem

• Given the above theorem, now we get back to the original

question which was whether diagonalization can resolve P vs

NP.

• Suppose a resolution of P vs NP is given using only the

properties of diagonalization (properties I and II listed above),

every statement about TM's in the resolution proof will also

hold for oracle TM's (for any oracle).

• Since BGS theorem shows the existence of oracles A and B

such that PA = NPA and PB ≠ NPB, we can say that P = NP can

neither be proved nor disproved using diagonalization

arguments.

• Hence any resolution of the P vs NP problem must use a non-

relativizing fact.

Relativizing in Complexity Theory

• Many results in complexity theory relativize.

Relativizing in Complexity Theory

• Many results in complexity theory relativize.

• However, there do exist non-relativizing results.

• Examples: PCP theorem and IP = PSPACE

Relativizing in Complexity Theory

• Many results in complexity theory relativize.

• However, there do exist non-relativizing results.

• Examples: PCP theorem and IP = PSPACE

• Not yet known how to use these non-relativizing

techniques to resolve P vs NP.

• BGS just tells us that if you ever hope to resolve P vs

NP, you had better use a non-relativizing fact in your

attempt to resolve.

What is behind relativization ?

• A deeper look at the concept of relativization.

What is behind relativization ?

• A deeper look at the concept of relativization.

• Notion of relativization was inspired from

independence results.

What is behind relativization ?

• A deeper look at the concept of relativization.

• Notion of relativization was inspired from

independence results.

• Independence results in mathematical logic are results

which showed that certain natural statements can

neither be proved nor disproved in a particular set of

axioms.

Independence Results

• Independence results showed that certain natural

mathematical statements can neither be proved nor

disproved in a particular set of axioms.

• Two well known examples of independence results.

• Eg 1: Euclid’s 5th postulate is independent from the

first four.

Euclid’s Postulates

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight

line.

3. Given any straight lines segment, a circle can be drawn having the

segment as radius and one endpoint as center.

4. All Right Angles are congruent.

5. If two lines are drawn which intersect a third in such a way that the

sum of the inner angles on one side is less than two Right Angles,

then the two lines inevitably must intersect each other on that side if

extended far enough. This postulate is equivalent to what is known

as the Parallel Postulate.

Non-Euclidean Geometries

• The fifth postulate is independent from the first four. i.e it

can neither be proved nor disproved using the first four

postulates.

• If we assume the fifth postulate, we get a certain set of

axioms – Euclidean Geometry

• If we assume the fifth postulate is not true, we get a

different set of axioms – Non-Euclidean geometries.

Another Example

• Continuum hypothesis is independent from

axioms of Zermelo-Fraenkel set theory.

Logical Independence vs Relativization

• BGS theorem shows that the statement P = NP can

neither be proved nor disproved using relativizable

facts.

• Consider a system of axioms which consists of all

and only those facts about P which relativize.

• P = NP is independent from this set of axioms.

• Such an set (axiomatic system) was actually given

by Arora, Impagliazzo and Vazirani [AIV93].

Set of non-relativizing facts ?

• How do we extend the above axiomatic system to

allow it to prove non-relativizing results ?

Set of non-relativizing facts ?

• How do we extend the above axiomatic system to

allow it to prove non-relativizing results ?

• One idea: Whenever a non-relayivizing result is

encountered, assume it is true. (Like we did in

constructing Euclidean geometry)

• A more conservative approach would ask the

following question.

• Is there a single non-relativizing fact which

is general enough so as to imply all known

non-relativizing results ?

The Cook-Levin Theorem!

• Surprisingly, it turns out that there is such a

non-relativizing fact.

• This is essentially the Cook-Levin Theorem

Crux of Cook-Levin: Computation is

Local

• Locality of computation: Each basic step of a Turing

machine only examines and modifies a constant number of

tape locations.

• The article mentioned above [AIV93] describes a few

ways to formalize the fact that computation if local.

• This means that any resolution of P vs NP will in some

way of the other use the fact that TM computations are

local.

• How close does knowing this fact take us to resolving P vs

NP ?

How big a leap have we made

towards resolving P vs NP ?

No bigger than the leap made by basic axioms

of arithmetic towards proving Fermat’s last

theorem!!

Conclusion

References

• Arora, Sanjeev, and Boaz Barak. Computational

complexity: a modern approach. Vol. 1.

Cambridge, UK: Cambridge University Press,

3(4): 65-68 (2009)

• T. P. Baker, J. Gill, R. Solovay. Relativizatons

of the P =? NP Question. SIAM Journal on

Computing, 4(4): 431-442 (1975)

