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• Challenge of Entity Resolution in the

domain where information is scarcely

available. Therefore, data is generated by

the crowd over social multi-media

platforms such as YouTube, Twitter, etc.,

Hence, data is ridden with subjective

evaluations, opinions, and speculations.

• Data snippets contains multiple temple

names and multiple temple location,

therefore, additional problem of location

disambiguation.
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• We manually designed and wrote rules for

parsing the textual data using JAPE

Grammar in GATE tool.

• Extract temple name and temple location

from the document di using

disambiguation methods.

• Use Google Maps API to list temple

names located around the extracted temple

location. The temple names and temple

location form a tuple ti stored in set T

• For each element t ∈ T, we calculate TF-

IDF score for tuple t over each document

d∈D, where D is the indexed set of

documents.

• We rank documents based on TF-IDF

scores for each query t∈T and map the top

ranked d to the temple.

Results

• To extract the basic location and video

data related to each temple, we use the

Google Maps and YouTube API

respectively.

• We disambiguate the name and location

of each temple using publicly available

data on the Web and leverage Google Maps

to assign videos to the correct temple.

• Temples names and temple locations are

extracted from the snippets using text

processing techniques.

• Given a new temple, we retrieve the set of

snippets related to the temple. These

snippets are fed as input to a CNN based

ranking system to score and rank snippets

based on the queried temple.

• Our dataset consists of more than four

hundred thousand temple names with their

locations extracted from Google Places. It

also contains more than two hundred

thousand videos fetched from YouTube.

• We sample 1000 videos randomly from

the complete video set to compute

precision, recall and F-measure and

evaluate the performance of videos

mapped to the temple

Precision = 0.863 , Recall = 0.89 , F = 0.876

Demonstration

• A demo of our system is accessible

at tinyurl.com/templedemos

• Demo of the Snippet Ranking system can 

be accessed at tinyurl.com/entityr

Demonstration of the System


