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Extractive Summary: TV Shows (Friends, Season 1, Episode 1)
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kinds of summarization tasks.

- Empirically and quantitatively prove the behaviour of the functions - In the framework, submodular video summarization is treated as two - We present a unified picture of multi-faceted video summarization for
on various videos across domains. distinct optimization problems. extractive, query based and entity based summarization.

> Discuss computational scalability of the optimization algorithms and & Budget Constrained Submodular Maximization - Take a closer look at different summarization models and argue the
the usage of computational tricks, such as lazy evaluations and L — Xt ) aremax FGIXT) benef!ts pf these models in different domains by comparing qualitative and
memoization. = g FEVAXE T ¢(3) quantitative results.

- Explore various video summarization variants and study the details ¢ Submodular Cover Problem = Implementation :‘[_riCkS:(: like memoizatigr][, can d:ats_ticallly i.mprovehthe

. . . . _ summary generation time, as compared to computational gains, such as
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