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GOOD SUMMARY?

e Unprecedented growth in video data

o Makes it challenging to store and consume

o Video summarization attempts to address these challenges,
but still an unsolved problem

What constitutes a good summary varies from domain to

domain

o Sports video - ‘importance’ is more important than ‘diversity

o Survelllance video - ‘diversity’ is more important than
‘Importance’

o Further, what is ‘important’ for soccer videos is different
from what is ‘important’ for birthday videos

A good video summary of a domain should have both

characteristics!

OUR CONTRIBUTIONS

Joint problem of learning domain specific importance of
segments as well as the desired summary characteristic for

that domain y*

An effective rating mechanism to serve as indirect ground
truth

A novel evaluation measure, more naturally suited in
assessing the quality of video summary for the task at hand
than F1 like measures

A gold standard dataset for domain specific video
summarization, first known dataset of long videos
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METHODOLOGY

e Weighted mixture of modular and submodular terms

o Modular terms: capture the domain specific importance of
shippets
o Submodular terms like Set Cover, Facility Location etc.:
impart certain desired characteristics to the summary
e Learn weighted mixture using max margin learning
framework
o Different weights learnt for different domain
e For any given test video of that domain, the weighted
mixture is then maximized to produce the desired summary
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RESULTS & CONCULSIONS

Repetitive: Saturate

Full mixture works best

video e Models trained on one domain do not perform well
on another
e Multiple ground truths help
e Strong correlation between components based on
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