#### A Framework towards Domain Specific Video Summarization

Vishal Kaushal<sup>1</sup>, Sandeep Subramanian<sup>1</sup>, Suraj Kothawade<sup>1</sup>, Rishabh Iyer<sup>2</sup>, Ganesh Ramakrishnan<sup>1</sup>

> Indian Institute of Technology Bombay<sup>1</sup> Microsoft Corporation<sup>2</sup>

## Motivation



## Motivation

#### Flip Side of Videos

Time consuming to retrieve important information

#### Heavy on storage

# Motivation

- Growing focus on different techniques for Video
   Summarization
- Good summary?
  - o Eliminate motionless chunks
  - o Eliminate repetitive chunks
  - o Retain what is important
- What is important for one domain is different from what is important for another domain
  - o **Type of scenes** Eg. Birthday (blowing candles, cutting cakes, ..), Soccer (kick, penalty, ..)
  - o **Nature of summary** Eg. Surveillance videos require outliers, TV Shows require representation

## **Different Domains**



Surveillance Video

**Birthday Video** 

Soccer Video

- Given a video of a particular domain, our system can produce a summary based on what is important for that domain
- Past related work has focused either on using supervised approaches for ranking the snippets to produce summary or on using unsupervised approaches of generating the summary as a subset of snippets with the above characteristics

## **Our Contributions**

- Joint problem of learning domain specific importance of segments as well as the desired summary characteristic for that domain
- Ratings more effective as opposed to binary inclusion/exclusion information
  - o In capturing the domain specific relevance
  - As unified representation of all possible ground truth summaries of a video, taking us one step closer in dealing with challenges associated with multiple ground truth summaries of a video
- A **novel evaluation measure**, more naturally suited in assessing the quality of video summary for the task at hand than F1 like measures
  - Leverages the ratings information and is richer in appropriately modeling desirable and undesirable characteristics of a summary
- A **gold standard dataset** for furthering research in domain specific video summarization
  - First dataset with long videos across several domains with rating annotations

# Approach

- Created a training dataset
  - o Birthday, Cricket, Soccer, Office, EntryExit
  - o Scenes and ratings
- Weighted mixture of modular and submodular terms
  - o Modular terms to capture the domain specific importance of snippets
  - Submodular terms like Set Cover, Facility Location etc. for imparting certain desired characteristics to the summary
- For each training video, components of the mixture are instantiated using different features and the weights of the complete mixture for that domain are learnt using max margin learning framework
- For any given test video of that domain, the weighted mixture is then maximized to produce the desired summary video

| Category   | Number of Videos | <b>Duration in mins</b> |
|------------|------------------|-------------------------|
| Cricket    | 7                | 276                     |
| Birthday   | 9                | 136                     |
| Soccer     | 11               | 609                     |
| Entry Exit | 21               | 306                     |
| Office     | 33               | 687                     |

### Formulation

$$y^* = \operatorname*{argmax}_{y \subseteq Y_v, |y| \le k} o(x_v, y)$$

$$o(x_v, y) = w^T f(x_v, y)$$

$$\min_{w \ge 0} \frac{1}{N} \sum_{n=1}^{N} L_n(w) + \frac{\lambda_1}{2} ||w_1||^2 + \frac{\lambda_2}{2} ||w_2||^2$$

$$L_n(w) = \max_{y \subseteq Y_v^n} (w^T f(x_v^n, y) + l_n(y)) - w^T f(x_v^n, y_{gt}^n)$$



#### Results

| Domain    | Method         | ScoreLoss |
|-----------|----------------|-----------|
|           | All Modular    | 0.7234    |
|           | All Submodular | 0.7307    |
| Birthday  | Full           | 0.6625    |
| Diffiday  | Random         | 0.7378    |
|           | Uniform        | 0.7569    |
|           | Submodular     | 0.7432    |
|           | All Modular    | 0.5967    |
|           | All Submodular | 0.6306    |
| EntryEvit | Full           | 0.5884    |
| EntryExit | Random         | 0.7706    |
|           | Uniform        | 0.7785    |
|           | Submodular     | 0.6306    |
|           | All Modular    | 0.8140    |
|           | All Submodular | 0.8275    |
| Cricket   | Full           | 0.7733    |
| Cheket    | Random         | 0.8911    |
|           | Uniform        | 0.8979    |
|           | Submodular     | 0.8275    |
|           | All Modular    | 0.3871    |
|           | All Submodular | 0.4783    |
| Office    | Full           | 0.3696    |
| Office    | Random         | 0.5743    |
|           | Uniform        | 0.5399    |
|           | Submodular     | 0.5590    |
|           | All Modular    | 0.8849    |
|           | All Submodular | 0.7645    |
| Soccer    | Full           | 0.6533    |
| Soccer    | Random         | 0.9217    |
|           | Uniform        | 0.8747    |
|           | Submodular     | 0.9152    |

Full mixture performs the best, as hypothesized

### Results

| Model Trained On | Model Tested On | ScoreLoss |
|------------------|-----------------|-----------|
|                  | Birthday        | 0.6625    |
| Birthday         | Soccer          | 0.9753    |
|                  | Cricket         | 0.9177    |
|                  | EntryExit       | 0.5884    |
| EntryEvit        | Soccer          | 0.9900    |
| Lifti yExit      | Cricket         | 0.9710    |
|                  | Birthday        | 0.8009    |
|                  | Cricket         | 0.7733    |
| Cricket          | Soccer          | 0.8284    |
|                  | Birthday        | 0.8103    |

Models trained on one domain do not perform well on another – has learnt characteristics specific to that domain

| Birthday  | Random GTs | 0.6625 |
|-----------|------------|--------|
| Difutury  | Same GT    | 0.6818 |
| EntryEvit | Random GTs | 0.5883 |
| EntryExit | Same GT    | 0.6188 |



#### **Results: Top Individual Components**

|          | Mod:vgg_features          | Mod:vgg_features         |  |
|----------|---------------------------|--------------------------|--|
|          | PSC:googlenet_p_concepts  | GC:vgg_features          |  |
|          | SC:color_hist_r_features  | GC:googlenet_features    |  |
|          | Mod:googlenet_features    | Mod:googlenet_features   |  |
|          | PSC:yolo_coco_p_concepts  | FL:googlenet_features    |  |
|          | PS                        | FL:vgg_features          |  |
| Birthday | SeC:yolo_coco_concepts    | GC:color_hist_b_features |  |
|          | GC:vgg_features           | SC:color_hist_b_features |  |
|          | SC:color_hist_b_features  | SC:color_hist_r_features |  |
|          | FL:vgg_concepts           | GC:color_hist_r_features |  |
|          | SC:googlenet_features     | GC:vgg_features          |  |
|          | GC:googlenet_features     | Mod:vgg_features         |  |
|          | Mod:vgg_features          | GC:googlenet_features    |  |
|          | FL:color_hist_g_features  | SC:googlenet_features    |  |
|          | PSC:googlenet_p_concepts  | GC:color_hist_r_features |  |
|          | PSC:vgg_p_concepts        | SC:color_hist_r_features |  |
| Cricket  | FL:googlenet_features     | FL:color_hist_g_features |  |
|          | GC:vgg_features           | SC:color_hist_s_features |  |
|          | Mod:googlenet_features    | GC:color_hist_s_features |  |
|          | PS                        | FL:googlenet_features    |  |
|          | Mod:yolo_coco_p_concepts  | DM:googlenet_features    |  |
|          | PSC:googlenet_p_concepts  | Mod:yolo_coco_p_concepts |  |
|          | Mod:vgg_features          | DM:color_hist_b_features |  |
|          | Mod:vgg_concepts          | DM:color_hist_r_features |  |
|          | SeC:color_hist_r_features | DM:color_hist_g_features |  |
|          | DM:color_hist_b_features  | PSC:vgg_p_concepts       |  |
| Office   | DM:vgg_features           | DM:vgg_features          |  |
|          | DM:yolo_coco_features     | Mod:vgg_features         |  |
|          | DM:color_hist_b_features  | GC:color_hist_g_features |  |
|          | DM:color_hist_r_features  | Mod:vgg_concepts         |  |

Left Column => Top Components based on learnt weights Right Column => Top Components with highest individual score when optimized.

We see Strong correlation between the two!

#### **Results: Relevance to Domain**

| Birthday                 | Mod:vgg_features<br>SC:color_hist_r_features<br>PSC:yolo_coco_p_concepts<br>SeC:yolo_coco_concepts<br>SC:color_hist_b_features      | PSC:googlenet_p_concepts<br>SC:googlenet_features<br>PS<br>GC:vgg_features<br>FL:vgg_concepts                   | Object Features<br>Scene Features                                  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Cricket                  | Mod:googlenet_features<br>SC:vgg_features<br>PSC:googlenet_p_concepts<br>FL:googlenet_features<br>Mod:googlenet_features            | GC:googlenet_features<br>FL:color_hist_g_features<br>PSC:vgg_p_concepts<br>GC:vgg_features<br>PS                | Color Features Diversity Model Representation Model Coverage Model |
| Office<br>(Surveillance) | Mod:yolo_coco_p_concepts<br>PSC:color_hist_b_features<br>GC:color_hist_r_features<br>DM:yolo_coco_concepts<br>DM:yolo_coco_features | Mod:vgg_concepts<br>Mod:vgg_features<br>DM:vgg_features<br>DM:color_hist_b_features<br>DM:color_hist_r_features | Importance moder                                                   |

#### **Results: Best Snippets**

#### Office

#### Birthday





#### Cricket







