

Motivation Deep Convolutional Models are very successful for several Computer Vision tasks, *but...* 1) Increased Training Time > Increased 2) Increased Labeling Cost Model 3) Increased Experimental Complexity Turn around time \succ Difficult to get labeled data! Outside of view fram Occluded or obstructe Person Outside of view fram Occluded or obstruct Bicycle 2 utside of view frame occluded or obstruct Outside of view frame occluded or obstructed ✓ Save Wor

Key Idea

- \succ Using submodular optimization for data subset selection and active learning.
- Submodular fuctions naturally model notions of representation, diversity and coverage which is useful for choosing a good dataset for Deep Learning tasks.
- \succ Facility Location (FL) models representation.
- \succ Minimum Dispersion (DM) models diversity.

Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for **Computer Vision**

Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Mahadev, Khoshrav Doctor, Ganesh Ramakrishnan

(TL to BR) - Unsupervised DSS on massive datasets for labeling, Supervised DSS for hyper-parameter tuning, Supervised DSS for KNN Classification, Submodular Active Learning for Gender Classification.

- \succ We demonstrate the utility of subset selection in training models for a variety of Computer Vision tasks.
- \succ Models trained on subsets obtained from certain submodular functions perform better than others.
- \succ Minimum Dispersion works best when there is a higher amount of redundancy in data, while Facility Location works better in other cases.

IEEE 2019 Winter Conference on Applications of **C**omputer **V**ision

Conclusions

Regardless, both out-perform random and uncertainty sampling.