Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for Computer Vision

Vishal Kaushal¹, Rishabh Iyer², Suraj Kothawade¹, Rohan Mahadev¹, Khoshrav Doctor³, Ganesh Ramakrishnan¹

Indian Institute of Technology Bombay¹
Microsoft Corporation²
University of Massachusetts Amherst³
Motivation

Deep Models are used everywhere today!

Increased Model Complexity

1) Increased Computing Resources
2) Increased Labeling Cost
3) Increased Turn Around Time
Increased Labelling Cost

Difficult to get Labeled Data!
Increased Turn Around Time

Harder to tune Hyperparameters

Hyperparameter tuning Best hyperparameters
Our Contributions

A unified framework for data subset selection

1. Facility Location (models representation)
2. Minimum Dispersion (models diversity)
Data Subset Selection

Given a ground set $V = \{1, 2, 3, \ldots, n\}$

Define a set function $f : 2^V \rightarrow R$ which measures how good a subset $X \subseteq V$

Problem 1: $\max\{f(X) \text{ such that } |X| \leq k\}$

The greedy algorithm obtains an approximation guarantee of $(1 - 1/e)$ for Problem 1 when f is the Facility Location function.

Similarly, the greedy algorithm achieves an approximation factor of $1/2$ when f is the Dispersion function.
They try to find a representative subset of items, akin to centroids and medoids in clustering.

Facility Location:

\[f(X) = \sum_{i \in V} \max_{j \in X} s_{ij} \]
They attempt to obtain a diverse set of keypoints

Dispersion Function:

\[f(X) = \min_{i,j \in X} d_{ij} \]

While diversity only looks at the elements in the chosen subset, representativeness also worries about their similarity with the remaining elements in the superset
Four Settings / Use Cases

Four concrete use cases of our framework

1. Supervised Data Selection for **Quick Training/Inference**
2. Supervised Data Selection for **Quick Hyper-parameter tuning**
3. Unsupervised Data Selection for **Labeling from Video Data**
4. Diversified **Active Learning**
Results: DSS for Quick Training/Inference

Supervised DSS for Quick Training/Inference (KNN Classification)
Results: DSS for Hyper Parameter Tuning

Top-5 Accuracy of 5% subsets for different sets of Hyperparams (Relative to Random)

- Facility Location
- Disparity Min

Sets
Results: DSS for Labeling Video Data

Comparison between different subsets for reduced labeling cost

Data Subset Selection on Massive Datasets for Labeling
Results: Diversified Active Learning

\[
\max \{ f(X) \text{ such that } |X| \leq B, X \subseteq F \}
\]

Submodular Active Learning on the Adience Dataset for Gender Classification