Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for Computer Vision

Vishal Kaushal¹, Rishabh Iyer², Suraj Kothawade¹, Rohan Mahadev¹, Khoshrav Doctor³, Ganesh Ramakrishnan¹

Indian Institute of Technology Bombay¹ Microsoft Corporation² University of Massachusetts Amherst³

Motivation

Deep Models are used everywhere today!

Increased Model Complexity

Increased Computing Resources
Increased Labeling Cost
Increased Turn Around Time

Increased Labelling Cost

Difficult to get Labeled Data!

+ New Object Annotate every object, even stationary and obstructed objects, for the entire video. Instructions - Car 4 Outside of view frame Occluded or obstructed - Person 3 Outside of view frame Occluded or obstructed - Bicycle 2 Outside of view frame Occluded or obstructed - Car 1 Outside of view frame Occluded or obstructed IN Rewind ► Play ≁ Options ✓ Save Work

Increased Turn Around Time

Harder to tune Hyperparameters

Hyperparameter tuning

Our Contributions

A unified framework for data subset selection

- 1. Facility Location (models representation)
- 2. Minimum Dispersion (models diversity)

Representation Functions

Diversity Functions

Data Subset Selection

Given a ground set $V = \{1, 2, 3, ..., n\}$

Define a set function $f: 2^V \to R$ which measures how good a subset $X \subseteq V$

Problem 1:
$$\max\{f(X) \text{ such that } |X| \le k\}$$

The greedy algorithm obtains an approximation guarantee of (1 - 1/e) for Problem 1 when *f* is the Facility Location function.

Similarly, the greedy algorithm achieves an approximation factor of 1/2 when f is the Dispersion function.

Representation Functions

They try to find a representative subset of items, akin to centroids and medoids in clustering

Facility Location:
$$f(X) = \sum_{i \in V} \max_{j \in X} s_{ij}$$

Diversity Functions

They attempt to obtain a diverse set of keypoints

Dispersion Function:
$$f(X) = \min_{i,j \in X} d_{ij}$$

While diversity only looks at the elements in the chosen subset, representativeness also worries about their similarity with the remaining elements in the superset

Four Settings / Use Cases

Four concrete use cases of our framework

- 1. Supervised Data Selection for **Quick Training/Inference**
- 2. Supervised Data Selection for **Quick Hyper-parameter tuning**
- 3. Unsupervised Data Selection for Labeling from Video Data
- 4. Diversified Active Learning

Results: DSS for Quick Training/Inference

Supervised DSS for Quick Training/Inference (KNN Classification)

Results: DSS for Hyper Parameter Tuning

Top-5 Accuracy of 5% subsets for different sets of Hyperparams (Relative to Random)

Sets

Results: DSS for Labeling Video Data

Comparison between different subsets for reduced labeling cost 0.6 DM FL

Data Subset Selection on Massive Datasets for Labeling

Results: Diversified Active Learning

Accuracies releative to Random

Submodular Active Learning on the Adience Dataset for Gender Classification