
AutoAugment: Learning
Augmentation Strategies

from Data
(Cubuk, Zoph, Mane, Vasudevan, Le) Google Brain

CVPR 2019

vkaushal@cse.iitb.ac.in | www.vishalkaushal.in

mailto:vkaushal@cse.iitb.ac.in
http://www.vishalkaushal.in

Motivation 1: Automation

What do ML Scientists do?
● Identify problems that can potentially be solved by ML
● Data collection, labeling, preprocessing, splitting
● Model design/selection, hyper parameter tuning, training, troubleshooting

What do ML Scientists do?
● Identify problems that can potentially be solved by ML
● Data collection, labeling, preprocessing, splitting
● Model design/selection, hyper parameter tuning, training, troubleshooting

These become VERY involving, especially with Deep Learning for Computer Vision

Auto ML

AutoML?

● What CAN be automated, SHOULD be and WILL be
automated

AutoML?

● What CAN be automated, SHOULD be and WILL be
automated

● Example: Neural Architecture Search
○ Google’s NAS “Neural Architecture Search with reinforcement learning”

ICLR 2017 (Same group)
○ NASNet: “Learning transferable architectures for scalable image

recognition." CVPR 2018 (Same group)
○ ENAS: “Efficient neural architecture search via parameter sharing” ICML

2018 (Same group)
○ AmoebaNet: “Regularized evolution for image classifier architecture search”

AAAI 2019 (Same group)
○ DARTS: Differentiable Architecture Search, ICLR 2019 (CMU and DeepMind

- Almost same group)

● Tons of resources at www.automl.org

Problem with manual data augmentation?
● Best augmentation strategies are dataset specific

○ MNIST: elastic distortions, scale, translation and rotation

○ Natural image datasets like CIFAR, ImageNet: random cropping, image mirroring, color
shifting/whitening

● Require expert knowledge and time

Motivation 2: Generalizability

Manually designed techniques are non-transferrable
● Because of different image characteristics
● Examples:

○ Horizontal flipping is effective on CIFAR-10, but not on MNIST

Motivation 3: Low Hanging Fruit

Two ways of making a model invariant to certain
data characteristics

● Hardcoding in model architecture
○ Example: CNNs are translation invariant

● Data augmentation
○ Effective technique for improving accuracy by class preserving transformations
○ Translate, flip, rotate, …

● Latter can be easier than former
○ Yet primary focus is on engineering better networks
○ VGGNet, GoogLeNet, ResNet, ResNeXt, PyramidNet, SENet, NASNet, AmoebaNet, ….

● “It has not been possible to beat the 2% error rate barrier on CIFAR-10 using
architecture search alone”

Related Work
● “A Bayesian Data Augmentation Approach for Learning Deep Models” NIPS

2017
○ Bayesian formulation where new annotated training points are treated as missing variables

and generated based on the distribution learned from the training set

● “Dataset augmentation in feature space” ICLR 2017 Workshop
○ Perform the transformation not in input space, but in a learned feature space

● “Smart Augmentation Learning an Optimal Data Augmentation Strategy”
2017

○ Proposed a network that automatically generates augmented data by merging two or more
samples from the same class to create new samples

● Various GAN approaches
● All of the above generate augmented data directly
● Exception - “Learning to Compose Domain-Specific Transformations for Data

Augmentation” NIPS 2017
○ used GANs to generate transformation sequences

Data Augmentation in Learned Feature Space

Smart Augmentation

Learning Transformations Using GAN

Definition of a Data Augmentation “Policy”
● A policy consists of many subpolicies
● A subpolicy contains

○ Operation 1, Probability, Magnitude
○ Operation2, Probability, Magnitude

● Operations to be applied in sequence
● Operations

○ Image operations from PIL: ShearX/Y, TranslateX/Y, Rotate, AutoContrast, Invert, Equalize,
Solarize, Posterize, Contrast, Color, Brightness, Sharpness

○ Cutout
○ SamplePairing

● No explicit Identity operation

How is AutoAugment applied during training?
● One subpolicy of the optimal policy is randomly picked up for each image in

each mini batch
● Operation 1 is applied with the probability and magnitude
● Operation 2 is applied with the probability and magnitude
● One image can be transformed differently in different mini-batches even

with the same subpolicy

Example

How is an optimal policy learnt?
● Inspired by Neural Architecture Search (NAS) framework proposed by “Neural

Architecture Search with Reinforcement Learning” ICLR 2017

How is an optimal policy learnt?
● Discrete search

problem - RL as
search algorithm

● In search space,
every policy has 5
subpolicies

Controller Architecture
● Inspired by “Learning Transferable Architectures for Scalable Image

Recognition” Google Brain, CVPR 2018 (NASNet)
● Identify repeating patterns that are at the core of successful architectures
● Two types of convolutional cells

○ Normal cell - convolutional cells that return a feature map of the same dimension
○ Reduction cell - convolutional cells that return a feature map where the feature map height

and width is reduced by a factor of two

● Search space: structures of normal and reduction cells
● Each convolutional cell contains B such blocks

○ Each block is defined by 5 discrete parameters

Controller Architecture

● 1 layer LSTM with 100 hidden units
● 2 X 5 X B softmax predictions for one architectural decision
● Joint probability of child network = product of all 10B probabilities
● Each child model is trained from scratch to compute the gradient update

REINFORCE Algorithm

→ Expected reward. To be maximized.

→ Policy gradient method REINFORCE

→ Empirical approximation of the above quantity.
m=no. of samples in one batch
T = no. of parameters that define child network’s
architecture

→ baseline function b to reduce the variance
For the update to remain unbiased, b should
not depend on the current action
b = exponential moving average of previous
accuracies

Training Algorithm
● Gradient computed from joint probability is scaled by R such that controller

assigns low probabilities for bad child networks and high probabilities for good
child networks

● PPO with learning rate 0.00035
○ Unlike NAS, which used REINFORCE from “Simple statistical gradient-following algorithms for

connectionist reinforcement learning” (1992)
○ Enables multiple epochs of minibatch updates
○ PPO is faster and more stable - other methods may perform better

● Entropy penalty with a weight of 0.00001
○ To encourage exploration

● Baseline function - exponential moving average of previous rewards with a
weight of 0.95

● Weights of LSTM are initialized uniformly between -0.1 and 0.1

Reinforcement Learning Algorithms
● Q-learning (with function approximation) fails on many simple problems and

is poorly understood
● Vanilla policy gradient methods have poor data efficiency and robustness
● Trust region policy optimization (TRPO) is relatively complicated, and is

not compatible with architectures that include noise (such as dropout) or
parameter sharing (between the policy and value function, or with auxiliary
tasks)

● Hence the authors decide to go with PPO

Optimal Policy?
● Concatenation of subpolicies of 5 best policies to have one optimal policy with

25 subpolicies

Learnt Policies

Typical Experimental Setup

CIFAR
● CIFAR 10 - 50000 training examples
● Reduced CIFAR-10 - 4000 randomly chosen training examples
● Baseline preprocessing

○ Standardizing → horizontal flips with 50% probablity → zero padding → random crops →
cutout (16X16)

● AutoAugment
○ Baseline preprocessing → optimal autoaugment policy → cutout (16X16)
○ Cutout may potentially be applied twice on the same image

Results

New CIFAR-10 Test Set
● Motivated by the fact that classifiers accuracy may be over-estimated

○ Same test sets have been used to select these models for multiple years now

● Shake Shake + Cutout - degraded by 4.1%
● PyramidNet + Shake Drop - degraded by 4.6%
● PyramidNet + Shake Drop + AutoAugment - degraded by only 2.9%

SVHN
● 73257 core training examples
● 531131 additional training examples
● Test set - 26032 examples
● Reduced SVHN - 1000 examples sampled randomly from core training set
● Validation set - Last 7325 samples of training set
● Baseline pre-processing

○ Standardizing → Cutout (20X20) (cutout not used in reduced SVHN)

● AutoAugment processing
○ Baseline → AutoAugment Policy

Results

Results
● Optimal policy for SVHN

○ Geometric transformations are picked more often
○ ShearX/Y are most common
○ Invert is a commonly selected operation

● Optimal policy for CIFAR 10
○ Color based transformations (Equalize, AutoContrast, Color, Brightness)
○ Geometric transformations are rarely found
○ Invert is almost never applied

ImageNet
● Reduced ImageNet - 120 classes (randomly chosen), 6000 samples
● Child model - WideResNet 40-2 using cosine decay for
● Baseline augmentation

○ Inception style preprocessing (scaling pixel values to [-1,1]) → horizontal flips with 50%
probability → random distortions of colors

● AutoAugment augmentation
○ Baseline → AutoAugment policy

ImageNet Results
● Best policies are similar to those found on CIFAR-10 focusing on color

transformations
● One difference - Rotate is commonly seen in ImageNet policies
● Improvement by just using 5000 images for learning best policy

Isn’t this computationally VERY expensive?
● Yes
● Thus, transferring a data augmentation policy to other datasets / models

can be a good alternative, if works
● It would also establish that AutoAugment doesn’t overfit to the dataset of

interest
● Policy learned using reduced ImageNet
● Applied on five challenging datasets with image size similar to ImageNet

○ Oxford 102 flowers, Caltech 101, Oxford IIIT Pets, FGVC Aircraft, Stanford Cars
○ Challenging because relatively small number of training examples as compared to the

classes

Results
● Optimal policy found on ImageNet leads to

significant improvements on a variety of FGVC
datasets

● Even on datasets for which fine-tuning weights
pre-trained on ImageNet does not help
significantly [26], e.g. Stanford Cars [27] and
FGVC Aircraft [38], training with the ImageNet
policy reduces test set error by 1.2% and 1.8%,
respectively

● Transferring data augmentation policies offers an
alternative method for standard weight transfer
learning

● AutoAugment policies are never found to hurt
the performance of models even if they are
learned on a different dataset (closer the better,
of course!)

Point to be noted
● Results can be further improved if better search algorithms are used
● For example:

○ “Simple random search provides a competitive approach to reinforcement learning”
○ “Regularized evolution for image classifier architecture search”

Comparison with the only other similar paper
● “Learning to Compose

Domain-Specific
Transformations for Data
Augmentation” NIPS 2017

○ Generator learns to propose a
sequence of transformations so that
augmented images can fool a
discriminator

● There: Tries to make sure that
augmented images are similar to
the current training images

● Here: Tries to optimize
classification accuracy directly

Ablation Experiments and Results
● More number of sub-policies => NN is trained on same points with greater

diversity of augmentation => increased generalization accuracy
●
● Randomizing probabilities and magnitudes of operations => worse

results => right probability and magnitude were actually being learnt
●
● Randomizing operations, probabilities and magnitudes => only slightly

worse => auto augment with random search also yields good results

Thank You
AutoAugment: Learning Augmentation Strategies from Data

vkaushal@cse.iitb.ac.in | www.vishalkaushal.in

mailto:vkaushal@cse.iitb.ac.in
http://www.vishalkaushal.in

