AutoAugment: Learning
Augmentation Strategies

from Data

(Cubuk, Zoph, Mane, Vasudevan, Le) Google Brain
CVPR 2019

vkaushal@cse.iitb.ac.in | www.vishalkaushal.in

mailto:vkaushal@cse.iitb.ac.in
http://www.vishalkaushal.in

Motivation 1: Automation

What do ML Scientists do?

e Identify problems that can potentially be solved by ML
e Data collection, labeling, preprocessing, splitting
e Model design/selection, hyper parameter tuning, training, troubleshooting

What do ML Scientists do?

e Identify problems that can potentially be solved by ML
e Data collection, labeling, preprocessing, splitting
e Model design/selection, hyper parameter tuning, training, troubleshooting

These become VERY involving, especially with Deep Learning for Computer Vision

Auto ML

w Tensorklow

"

COCLES ARG
?
AutoML: LEARNING SOFTWARE

e \What CAN be automated, SHOULD be and WILL be
automated

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

COCLES ARG,
?
AutoML LEARNING SOFTWARE

e \What CAN be automated, SHOULD be and WILL be
automated

e Example: Neural Architecture Search

o Google’s NAS “Neural Architecture Search with reinforcement learning”
ICLR 2017 (Same group)

o NASNet: “Learning transferable architectures for scalable image
recognition." CVPR 2018 (Same group)

o ENAS: “Efficient neural architecture search via parameter sharing” ICML
2018 (Same group)

o AmoebaNet: “Regularized evolution for image classifier architecture search”
AAAI 2019 (Same group)

o DARTS: Differentiable Architecture Search, ICLR 2019 (CMU and DeepMind
- Almost same group)

e Tons of resources at www.automl.org

Problem with manual data augmentation?

e Best augmentation strategies are dataset specific
o MNIST: elastic distortions, scale, translation and rotation

o Natural image datasets like CIFAR, ImageNet: random cropping, image mirroring, color
shifting/whitening

e Require expert knowledge and time

Motivation 2: Generalizability

Manually designed techniques are non-transferrable

e Because of different image characteristics

e Examples:
o Horizontal flipping is effective on CIFAR-10, but not on MNIST

Motivation 3: Low Hanging Fruit

Two ways of making a model invariant to certain
data characteristics

e Hardcoding in model architecture
o Example: CNNs are translation invariant

e Data augmentation
o Effective technique for improving accuracy by class preserving transformations
o Translate, flip, rotate, ...

e Latter can be easier than former
o Yet primary focus is on engineering better networks
o VGGNet, GoogLeNet, ResNet, ResNeXt, PyramidNet, SENet, NASNet, AmoebaNet,

e ‘|t has not been possible to beat the 2% error rate barrier on CIFAR-10 using
architecture search alone”

Related Work

“A Bayesian Data Augmentation Approach for Learning Deep Models” NIPS
2017

o Bayesian formulation where new annotated training points are treated as missing variables
and generated based on the distribution learned from the training set

“Dataset augmentation in feature space” ICLR 2017 Workshop
o Perform the transformation not in input space, but in a learned feature space

“‘Smart Augmentation Learning an Optimal Data Augmentation Strategy”
2017

o Proposed a network that automatically generates augmented data by merging two or more
samples from the same class to create new samples

Various GAN approaches

All of the above generate augmented data directly

Exception - “Learning to Compose Domain-Specific Transformations for Data
Augmentation” NIPS 2017

o used GANSs to generate transformation sequences

Data Augmentation in Learned Feature Space

—
D
- e o an
pru—

Encoder ("_: \
Data \(:"/.—J
Augmentation | i
Encoder | o |
|
T I .
G : Sequence
. | Classifier
(X2 A i S Seancone =
-]
L Static
Classifier
(a) Sequence autoencoder (b) Encode and apply data transform (c) Decode
and/or classify

Figure 1: System architecture composed of three steps. (a) A sequence autoencoder learns a feature
space from unlabeled data, representing each sequence by a context vector (C'). (b) Data is encoded
to context vectors and augmented by adding noise, interpolating, or extrapolating (here we depict
interpolation). (c) The resulting context vectors can either be used directly as features for supervised
learning with a static classifier, or they can be decoded to reconstruct full sequences for training a
sequence classifier.

Smart Augmentation

40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

FIGURE 3. The image on the left is created by a learned combination of
the two images on the right. This type of image transformation helped
increase the accuracy of network B. The image was not produced to be an
ideal approximation of a face but instead, contains features that helped
network B better generalize the concept of gender which is the task it
was trained for.

Data from saene
Class

FIGURE 1. Smart augmentation with more than one network A

Data from same
class

NETWORK
Al
NETWORK i lacts TWORK S
ETWORK S\ | Selection NETWORK | loid
A2 | functlon B _.'\
|
5
— - Selecsad 1cess tanction for
Nl.lrh:lkk sample setwork B
‘ from the (LB)
Loss = f(L g\ Ly) N clss
~ Loss function for |
> network A i
(La) |
................................... J
&
R NETWORK
Selection function — 'T“ RK |

Loss = f(L,.L;)

FIGURE 2. Diagram illustrating the reduced smart augmentation concept with just one network A.

¥
Loss function for
network B
(Lo

Learning Transformations Using GAN

I R
SO B) N Lo |

TF sequences TF sequences

Unlabeled h | = Labeled h K f _, Trained
\ Tl e 02| ¢ [SR rUdteLBa { 27) Tena vioce

(1) Adversarial training of generator (2) End model training with data
augmentation
Figure 2: A high-level diagram of our method. Users input a set of transformation functions hq, ..., h g

and unlabeled data. A generative adversarial approach is then used to train a null class discriminator,
D", and a generator, G, which produces TF sequences ., , ..., h,, . Finally, the trained generator is
used to perform data augmentation for an end discriminative model D/ .

Definition of a Data Augmentation “Policy”

e A policy consists of many subpolicies

e A subpolicy contains
o Operation 1, Probability, Magnitude
o Operation2, Probability, Magnitude
e Operations to be applied in sequence

e Operations
o Image operations from PIL: ShearX/Y, TranslateX/Y, Rotate, AutoContrast, Invert, Equalize,
Solarize, Posterize, Contrast, Color, Brightness, Sharpness
o Cutout
o SamplePairing

e No explicit Identity operation

Operation Name Description l-{ange of
magnitudes

ShearX(Y) Shear the image along the horizontal (vertical) axis with rate [-0.3.0.3]
magnitude.

TranslateX(Y) Translate the image in the horizontal (vertical) direction by [-150.150]
magnitude number of pixels.

Rotate Rotate the image magnitude degrees. [-30.30]

AutoContrast Maximize the the image contrast, by making the darkest pixel
black and lightest pixel white.

Invert Invert the pixels of the image.

Equalize Equalize the image histogram.

Solarize Invert all pixels above a threshold value of magnitude. [0.256]

Posterize Reduce the number of bits for each pixel to magnitude bits. [4.8]

Contrast Control the contrast of the image. A magnitude=0 gives a gray [0.1,19]
image, whereas magnitude=1 gives the original image.

Color Adjust the color balance of the image, in a manner similar to [0.1,1.9]
the controls on a colour TV set. A magnitude=0 gives a black
& white image, whereas magnitude=1 gives the original image.

Brightness Adjust the brightness of the image. A magnitude=0 gives a [0.1,19]
black image, whereas magnitude=1 gives the original image.

Sharpness Adjust the sharpness of the image. A magnitude=0 gives a [0.1,19]
blurred image, whereas magnitude=1 gives the original image.

Cutout [12, o9] Set a random square patch of side-length magnitude pixels to [0,60]
gray.

Sample Pairing [24, o8] Linearly add the image with another image (selected at ran- [0, 0.4]

dom from the same mini-batch) with weight magnitude. without
changing the label.

Table 6. List of all image transformations that the controller could choose from during the search. Additionally, the values of magnitude
that can be predicted by the controller during the search for each operation at shown in the third column (for image size 331x331). Some
transformations do not use the magnitude information (e.g. Invert and Equalize).

How is AutoAugment applied during training?

One subpolicy of the optimal policy is randomly picked up for each image in
each mini batch

Operation 1 is applied with the probability and magnitude

Operation 2 is applied with the probability and magnitude

One image can be transformed differently in different mini-batches even
with the same subpolicy

Example

Original Sub-policy I~ Sub-policy 2 Sub-policy 3~ Sub-policy 4 Sub-policy 5

Batch 1

Batch 2

Batch 3

ShearX, 0.9. 7 ShearY. 0.7, 6 ShearX, 0.9. 4 Invert, 0.9. 3 ShearY, 0.8, 5
Invert, 0.2, 3 Solarize, 04,8 AutoContrast, 0.8, 3 Equalize, 0.6, 3 AutoContrast, 0.7, 3

How is an optimal policy learnt?

e Inspired by Neural Architecture Search (NAS) framework proposed by “Neural
Architecture Search with Reinforcement Learning” ICLR 2017

Sample architecture A
with probability p

[¥

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller

How is an optimal policy learnt?

operutrono — |6
Discrete search Moo bude — 10

{yo b@\lﬂ(% -
problem - RL as 10
. (léXTOWD
search algorithm prssibilities
Sample a strategy S
In search space, Seguenct &) (Operation type, probability
) 20 S,agfm and magnitude)
every policy has 5 rekiums from Searcln cpace
subpolicies convergenes
) N
Train a child network
The controller (RNN) with strategy S to get
validation accuracy R
g)
Liored
. T 4) onebstecdire
Ui p&b“é Use R to update ‘
X@«LM the controller
R
(scoksct by) g J Dore 15000 tormea

Controller Architecture

e Inspired by “Learning Transferable Architectures for Scalable Image
Recognition” Google Brain, CVPR 2018 (NASNet)
e Identify repeating patterns that are at the core of successful architectures

e Two types of convolutional cells
o Normal cell - convolutional cells that return a feature map of the same dimension
o Reduction cell - convolutional cells that return a feature map where the feature map height
and width is reduced by a factor of two e

e Search space: structures of normal and reduction cells]
e Each convolutional cell contains B such blocks i
o Each block is defined by 5 discrete parameters s Whas
3x3conv 2 x 2 maxpool
1 T

1 |
! hidden layerA | ! hidden layer 8 |
________ | - e e |

Controller Architecture

softmax
layer

controller
hidden layer

Select one Select second Select operation for Select operation for Select method to
N hidden state [hiddenstate [| firsthiddenstate | |second hidden state [| combine hidden state
\ \ T \ T \ T \ T
\ \ \ \ \
—\—P —\—) —‘—) \ > —>
\ \ \ \ \
4 -4 4
\ o , 4 \ 7 N
- - - - ~

) repeat B times

1 layer LSTM with 100 hidden units

2 X 5 X B softmax predictions for one architectural decision

Joint probability of child network = product of all 10B probabilities

Each child model is trained from scratch to compute the gradient update

REINFORCE Algorithm

J(0:) = Er i)[[{] — Expected reward. To be maximized.

Vo.J ZLP (arr0.) | Vo. log Plaglag—1)1:0.)R] — Policy gradient method REINFORCE
m T

1 : — Empirical approximation of the above quantit

- log P(a¢|a—1y:1; 0c)Ri P PP 9 Y

m ZZVU“ 0g Plarlag—1):1;0c) Ry m=no. of samples in one batch

k=1 t=1 T = no. of parameters that define child network’s

architecture

m

1

T
Z Vo. log P(a¢|ai;_1).1:0:)(Rr — b) — baseline function b to reduce the variance
m ;

R fam] For the update to remain unbiased, b should
not depend on the current action
b = exponential moving average of previous
accuracies

Training Algorithm

Gradient computed from joint probability is scaled by R such that controller
assigns low probabilities for bad child networks and high probabilities for good
child networks

PPO with learning rate 0.00035

o Unlike NAS, which used REINFORCE from “Simple statistical gradient-following algorithms for
connectionist reinforcement learning” (1992)
o Enables multiple epochs of minibatch updates
o PPO is faster and more stable - other methods may perform better
Entropy penalty with a weight of 0.00001

o To encourage exploration
Baseline function - exponential moving average of previous rewards with a
weight of 0.95
Weights of LSTM are initialized uniformly between -0.1 and 0.1

Reinforcement Learning Algorithms

e Q-learning (with function approximation) fails on many simple problems and
is poorly understood

e Vanilla policy gradient methods have poor data efficiency and robustness

e Trust region policy optimization (TRPO) is relatively complicated, and is
not compatible with architectures that include noise (such as dropout) or
parameter sharing (between the policy and value function, or with auxiliary
tasks)

e Hence the authors decide to go with PPO

Optimal Policy?

e Concatenation of subpolicies of 5 best policies to have one optimal policy with
25 subpolicies

Learnt Policies

Operation | Operation 2 S Operation 1 Operation 2
Sub-policy 0 (Invert,0.1,7) (Contrast.0.2,6) Sub-policy 0 (ShearX,0.9.4) (Invert,0.2.3) Operation | Operation 2
Sub-policy 1 (Rotate 0.7,2) (TranslateX.0.3,9) Sub-policy 1 (ShearY.0.9.8) (Invert,0.7.5) Sub-policy 0 (Posterize,0.4.8) (Rotate.0.6,9)
Sub-policy 2 (Sharpness.0.8.1) (Sharpness,0.9.3) Sub-policy 2 (Equalize,0.6,5) (Solarize,0.6.6) Sub-policy 1 (Solarize,0.65) (AutoContrast.0.6,5)
Sub-policy 3 (ShearY.0.5.8) (TranslateY,0.7.9) Sub-policy 3 (Inver,09.3) (Equalize,0.6,3) Sub-policy 2. (Equalize0.8.8) (Bqualize,0.6.3)
Sub-policy 4 (AutoContrast0.5.8) (Equalize 0.9.2) Sub-policy4 (Equalize0.6,1) (Rotate,0.9.3) Sub-policy 3 (Posteize0.6,7) (Poserize,0.6.0)
¥ K 2 t Sub-policy 4 (Equalize,0.4.7) (Solarize.0.2.4)
Sub-policy 5 (ShearY.0.2,7) (Posterize.0.3.7) Sub-policy 5 (ShearX.09.4) (AutoContrast.0.8.3) Sub-bolic alize 0.4.4 R 088
Sub-policy 6 (Color.0.4.3) (Brightness.0.6.7) Sub-policy 6 (ShearY.0.9.8) (Invert,0.4.5) b pocy > (Eqaimellt) (Romn0.5%)
2 po. Y ST .S i] s el Sub-policy 6 (Solarize.0.6.3) (Equalize.0.6.7)
Sub-policy 7 (Sharpness.0.3.9) (Brightness,0.7.9) Sub-policy 7 (ShearY.0.9.5) (Solarize,0.2.6) Sub-policy 7 (Posterize,0.8,5) (Equalize,1.0.2)
Sub-policy 8 (Equalize,0.6,5) (Equalize.0.5.1) Sub-policy 8 (Invert.0.9.6) (AutoContrast.0.8.1) Sub-policy 8 (Rotate,0.2,3) (Solarize.0.6.8)
Sub-policy 9 (Contrast,0.6.7) (Sharpness.0.6.5) Sub-policy 9 (Equalize,0.6.3) (Rotate.0.9.3) Sub-policy 9 (Equalize,0.6,8) (Posterize,0.4,6)
Sub-policy 10 (Color,0.7.7) (TranslateX.0.5,8) Sub-policy 10 (ShearX.09.4) (Solarize,0.3.3) Sub-policy 10 (Rotate,0.8.8) (Color,0.4.0)
Sub-policy 11 (Equalize 0.3,7) (AutoContrast.0.4.8) Sub-policy 11 (ShearY,0.8.8) (Invert,0.7.4) Sub-policy 11 (Rotate,0.4.9) (Equalize.0.6.2)
Sub-policy 12 (TranslateY,0.4,3) (Sharpness.0.2,6) Sub-policy 12 (Equalize,0.9.5) (TranslateY.0.6.6) Sub-policy 12 (Equalize.0.0,7) (Equalize,0.8,8)
Sub-policy 13 (Brightness.09.6) (Color.0.2.8) Sub-policy 13 (Invert.0.9.4) (Equalize 0.6,7) Sub-policy 13 (Invert.0.6,4) (Equalize,1.0.8)
< - Z . . . g Sub-policy 14 (Color,0.6.4) (Contrast,1.0,8)
Sub-policy 14 (Solarize.0.5.2) (Invert,0.0,3) Sub-policy 14 (Contrast,0.3,3) (Rotate.0.8.4) o el KT
Sub-policy 15 (Equalize,0.2,0) (AutoContrast0.6,0) Sub-policy 15 (Inver085) (TranslateY,0.0.2) e o) DR
_poli ali ali - Sub-policy 16 (ShearY,0.7.6) (Solarize,0.4,8) W-palicy 16 (Conel.8.5) tSolanze,.8,7)
Sub polfcy 16 (Equalize,0.2.8) (Equal?ze.o.&-i) ul po- y » 07, 0.4, Sub-policy 17 (Sharpness.04.7) (Invert,0.6.8)
Sub-policy 17 (Color,0.9,9) (Equalize.0.6.6) Sub-pol!cy 17 (Invert,0.6.4) (Rotate.0.8.4) Sub-policy 18 (ShearX.0.6.5) (Equalize,1.0.9)
Sub-policy 18 (AutoContrast.0.84) (Solarize,0.2.8) Sub-policy 18 (ShearY,0.3.7) (TranslateX,0.9.3) Sub-policy 19 (Color,0.4,0) (Equalize,0.6.3)
Sub-policy 19 (Brightness.0.1.3) (Color.,0.7.0) Sub-policy 19 (ShearX.0.1.6) (Invert,0.6,5) Sub-policy 20 (Equalize,0.4,7) (Solarize. 0.2.4)
Sub-policy 20 (Solarize.0.4.5) (AutoContrast,0.9.3) Sub-policy 20 (Solarize,0.7.2) (TranslateY.0.6.7) Sub-policy 21 (Solarize.0.6.5) (AutoContrast,0.6,5)
Sub-policy 21 (TranslateY,0.9.9 (TranslateY,0.7.9 Sub-policy 21 (ShearY,0.8.4) (Invert,0.8.8) Sub-policy 22 (Invert,0.6,4) (Equalize,1.0.8)
policy)) :
Sub-policy 22 (AutoContrast,0.9.2) (Solarize.0.8.3) Sub-policy 22 (ShearX.0.7.9) (TranslateY.0.8.3) Sub-policy 23 (Color,0.6.4) (Contrast,1.0.8)
Sub-policy 23 (Equalize,0.8.8) (Invert,0.1,3) Sub-policy 23 (ShearY,08.5) (AutoContrast,0.7.3) S paficy 02 _\Fgualizc.03.5). {Egeaie05.))
Sub-policy 24 (TranslateY.0.7.9) (AutoContrast,0.9,1) Sub-policy 24 (ShearX.0.7.2) (Invert,0.1.5) Talie . Anso/mgment: palicy: faand oarednced magaive.

Table 7. AutoAugment policy found on reduced CIFAR-10.

Table 8. AutoAugment policy found on reduced SVHN.

Typical Experimental Setup

ol WA
,j?d@&ﬂe}'l«gal
s chald W/

(trwinad o (20 ¢pb)

CIFAR

e CIFAR 10 - 50000 training examples
e Reduced CIFAR-10 - 4000 randomly chosen training examples

e Baseline preprocessing

o Standardizing — horizontal flips with 50% probablity — zero padding — random crops —
cutout (16X16)

e AutoAugment

o Baseline preprocessing — optimal autoaugment policy — cutout (16X16)
o Cutout may potentially be applied twice on the same image

Results

® effedk o AvtoAngrant wedueer ap the doAsset size inestaser
Wsed ceunndngrstts

Dataset Model Baseline Cutout[' '] AutoAugment

CIFAR-10 Wide-ResNet-28-10 [] 3.9 3.1 2.6+0.1

MQE Shake-Shake (26 2x32d) [/] 3.6 3.0 2.540.1

Shake-Shake (26 2x96d) [/] 29 2.6 2.0+0.1

oy Shake-Shake (26 2x112d) [/] 2.8 2.6 1.940.1

AmoebaNet-B (6,128) [] 3.0 ZDSOTA 1.840.1
PyramidNet+ShakeDrop [] 37 2.3 1.5+01 067 §

Reduced CIFAR-10 Wide-ResNet-28-10 [] 18.8 16.5 14.1+0.3

1000 5 0 wi“{rdsJShake-Shake (26 2x96d) [/] 17.1 13.4 10.0+£0.2 3 4. l@
CIFAR-100 Wide-ResNet-28-10 [] 18.8 18.4 17.1£0.3
Shake-Shake (26 2x96d) [] 17.1 16.0 14.340.2

PyramidNet+ShakeDrop [*] 14.0 @2)SSTA 107+02 1457)

New CIFAR-10 Test Set

e Motivated by the fact that classifiers accuracy may be over-estimated
o Same test sets have been used to select these models for multiple years now

e Shake Shake + Cutout - degraded by 4.1%
e PyramidNet + Shake Drop - degraded by 4.6%
e PyramidNet + Shake Drop + AutoAugment - degraded by only 2.9%

SVHN

73257 core training examples

531131 additional training examples

Test set - 26032 examples

Reduced SVHN - 1000 examples sampled randomly from core training set
Validation set - Last 7325 samples of training set

Baseline pre-processing
o Standardizing — Cutout (20X20) (cutout not used in reduced SVHN)

e AutoAugment processing
o Baseline — AutoAugment Policy

Results

SVHN Wide-ResNet-28-10 [/] 1.5 1.3 1.1
Shake-Shake (26 2x96d) [| '] 1.4 1.2 1.0
Reduced SVHN Wide-ResNet-28-10 [/] 13.2 32.5 8.2
Shake-Shake (26 2x96d) [| '] 12.3 24.2 5.9

Results

e Optimal policy for SVHN
o Geometric transformations are picked more often
o ShearX/Y are most common
o Invert is a commonly selected operation

e Optimal policy for CIFAR 10

o Color based transformations (Equalize, AutoContrast, Color, Brightness)
o Geometric transformations are rarely found
o Invert is almost never applied

ImageNet

e Reduced ImageNet - 120 classes (randomly chosen), 6000 samples
e Child model - WideResNet 40-2 using cosine decay for

e Baseline augmentation
o Inception style preprocessing (scaling pixel values to [-1,1]) — horizontal flips with 50%
probability — random distortions of colors
e AutoAugment augmentation
o Baseline — AutoAugment policy

ImageNet Results

Best policies are similar to those found on CIFAR-10 focusing on color
transformations

One difference - Rotate is commonly seen in ImageNet policies
Improvement by just using 5000 images for learning best policy

Model Inception AutoAugment
Pre-processing [] ours
ResNet-50 76.3/93.1 77.6/93.8
ResNet-200 78.5/94.2 80.0/95.0
AmoebaNet-B (6,190) 82.2/96.0 82.8/96.2

AmoebaNet-C (6,228) 83.1/96.1 83.5/96.5

Isn’t this computationally VERY expensive?

e Yes

e Thus, transferring a data augmentation policy to other datasets / models
can be a good alternative, if works

e It would also establish that AutoAugment doesn’t overfit to the dataset of
interest

e Policy learned using reduced ImageNet

e Applied on five challenging datasets with image size similar to ImageNet
o Oxford 102 flowers, Caltech 101, Oxford IlIT Pets, FGVC Aircraft, Stanford Cars

o Challenging because relatively small number of training examples as compared to the
classes

Results

e Optimal policy found on ImageNet leads to

. . . . D Trai Cl Baseli AutoA t-
significant improvements on a variety of FGVC aaset Sl .
datasets Oxford 102 2,040 102 6.7 4.6

i i i i Flowers []
e Even on datasets for which fine-tuning weight: Caltech-101[1 -] 3,060 102 194 13.1
. d-III'T 13. 11.
pre-trained on ImageNet does not help Se"é"[r] g0l B - i
significantly [26], e.g. Stanford Cars [27] and i(i}VCf [] 6,667 100 9.1 7.3
. L. . rcraft
FGVC Aircraft [38], training with the ImageNet Stanford 8144 196 64 (52) SotA ®
. 0 o Cars [/]
pOIICy reduces test set error by 1.2% and 1.8 /0’ Table 4. Test set Top-1 error rates (%) on FGVC datasets for
respectlvely Inception v4 models trained from scratch with and without

® Transferring data augm entation policies offers an AutoAugment-transfer. L.ower rates are better. AutoAugment-
transfer results use the policy found on ImageNet, Baseline mod-

alternative method for standard weight transfe eis used Inception pre-processing.® Evem though toine from
. Scyaikon
learning
e AutoAugment policies are never found to hurt
the performance of models even if they are
learned on a different dataset (closer the better,
of course!)

Point to be noted

e Results can be further improved if better search algorithms are used

e For example:
o “Simple random search provides a competitive approach to reinforcement learning”
o “Regularized evolution for image classifier architecture search”

Comparison with the only other similar paper

e “Learning to Compose
Domain-Specific
Transformations for Data

. ” Method Baseline Augmented Improvement A

Augmentation” NIPS 2017 LSTM[] 7= 0 6
o Generator learns to propose a MF [/17] Tl 5.6 2.1
sequence of transformations so that AutoAugment 1.7 4.5 3.2

: ResNet-32)

augmented images can fool a (

,g o g AutoAugment 6.6 3.6 3.0

discriminator (ResNet-56)

e There: Tries to make sure that
augmented images are similar to
the current training images

e Here: Tries to optimize
classification accuracy directly

Ablation Experiments and Results

More number of sub-policies => NN is trained on same points with greater
diversity of augmentation => increased generalization accuracy

Randomizing probabilities and magnitudes of operations => worse
results => right probability and magnitude were actually being learnt

Randomizing operations, probabilities and magnitudes => only slightly
worse => auto augment with random search also yields good results

Thank You

AutoAugment: Learning Augmentation Strategies from Data

vkaushal@cse.iitb.ac.in | www.vishalkaushal.in

mailto:vkaushal@cse.iitb.ac.in
http://www.vishalkaushal.in

