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ML for Surveillance Video Analytics
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| just sent I'm working
them to you. on them.

No plans yet.
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https://www.slideshare.net/awahid/big-data-and-machine-learning-for-businesses



ARTIFICIAL
INTELLIGENCE

stirs excitement M AC H I N E
LEARNING

DEEP

i
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1950°s 1960°s 1970°s 1980's 1990's 2000's 2010's

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine {earning - have created ever larger disruptions.




What is this?

function predict(image)
-- 2222
return class_label
end




Data Driven Paradigm

Traditional Programming

Data

Output
Program

Machine Learning

Data

Program
Output
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The New New Ol

Machine Learning

&k 227 -l

Input Feature extraction Classification Output

Deep Learning

o~ 3333

Input Feature extraction + Classification Output




2012: The Turning Point Classification

e ImageNet Classification Task
e Previous Best: ~25% (CVPR 2011)
e AlexNet: ~15% (NIPS 2012)




What Is Deep Learning?

B
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Y. Bengio et al, "'Deep Learning”, MIT Press, 2015
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ImageNet Classification top-5 error (%)

Courtesy: Kaiming He’s Presentation [Deep Residual Learning for Image Recognition]



Only Going to get Bigger and Better (Hopefully)

deepart.io Google Deep Dream Deep Fakes

Creating video from AN image
http://news.mit.edu/2016/creating-videos-of-the-future-1129



http://news.mit.edu/2016/creating-videos-of-the-future-1129

Increasing Complexity

Nouns,
Images

Verbs,
Context,
Videos

Image Classification / Object Recognition
o What is this object / image?

Object Localization
o  Where is this object?

Object Detection

o Classification + Localization of every instance of the object
Semantic segmentation
Face, Pose, Human Attributes
Image captioning
Action Recognition
Visual Question Answering
Suspicious Activity, Anomaly ....



NOTICE |

Motivation: Videos are everywhere! =

THIS PROPERTY
IS PROTECTED
BY VIDEO

SURVEILLANCE

THE VALUE OF A
T-MINUTE VIDEO

IS WORTH
1.8 MILLION WORDS

Dr. James McQuivey




Visual Data Explosion: Two Sided Coin
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“Capture first, filter later” mentality

15



Problem With Manual Surveillance

Limited attention
span of humans




Problem With Manual Surveillance

“A wealth of information
creates a poverty of
attention”

Herb Simon

Father or Artificial Intelligence




Solutions

Search in
Videos

You know what you are
looking for, but do not
have the patience to sit
through long videos!

Summarize
Videos

You do not know what

you are looking for, but

want to watch a 6 hours
video in 6 minutes!

Analyze
Videos

For count of objects,
people, motion
information, compliance
related analysis ...




Video Analytics for Security & Surveillance

r N r N
Real-time Alerts Smart Search
Y Email / Mobile / Audio ( Y\ for Entities / Color/
L / Visual ) L Gender )
“Alert me when a human enters a “Show me all people wearing yellow
restricted area” shirt”

r p r D
Summarization L J Analytics L
Watch hours in Count of entities /

- minutes! y . Motion Analysis y

“Show me a digest of whatever “Show me the period of maximum
happened today” motion”

First-Aid Redefined



Video Analytics for Compliance / Monitoring

Education

Healthcare

Businesses

Number of students in the class
Is everybody wearing uniform?
Has the class started on time?

Are the nurses visiting the patients?
Is there somebody always at the help desk?

Is there a congestion somewhere?

How is the footfall?

What kind of people come to our mall?
Males? Females? Young? Old?

Flow of motion in the mall?




Video Analytics on the Edge

Resource Constrained
Deep Learning

@ 12 FPSona CPU
Intel NUC box



https://docs.google.com/file/d/1fHbgDbYyNct53r3FP3ZyPUx54EeE2Tjz/preview

Surveillance Video
Analytics for Security



Smart Encoder Appliance
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Self Service Portal
All Uploads

ﬂmw vid. mp4 2

|
Name: vid.mp4 2017-08-

):09.000Z

Name: video_7.mp4 2017-

Name: Demo-2017-03-

5.43.57 m;-l_,l -08-22T06:03:30.000Z




Smart Search Example: “person wearing blue”



https://docs.google.com/file/d/1S89EdUsFjqQsmAjAA1-YMeZX7-hXj8My/preview

Video Summarization

e Hoursinto minutes

e Enables quick analysis
of stored footages

e Smarter than vanilla
motion detection

e Give me asummary of
yesterday’s footages

e Currentresearch:learn
what is important for a
domain



https://docs.google.com/file/d/1cFNvptAkP5m14elMck6ZWQkAcXcU73Mx/preview

Statistics Dashboard

Camera



https://docs.google.com/file/d/1PKwEqWixCkZEAEO5AwqHPyh5n7VUg_tx/preview
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https://docs.google.com/file/d/1Shfzx_eUBMw7oVw4rFVJUmQjlfcYaC_w/preview

Real-Time Alerts
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Surveillance Video
Analytics for
Compliance & Quality
Monitoring
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Overall Dashboard
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SDC Dashboard
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Punctuality Non Compliances
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Apparel Recognition

Detect
unauthorized

people
Verify compliance



https://docs.google.com/file/d/0B6ybYxQLtxzbdGlLREJ1V3NvWWc/preview

Miles to go before we sleep ...

“Two pizzas
sitting on top of
a stove top
oven”

“Two pizzas
being heated
on top of a
stove top oven”
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[Intriguing properties of neural networks, Szegedy et al., 2013]
[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images Nguyen, Yosinski, Clune,
2014]



Our Vision: From Human to Machine Assisted Human
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Some other students and interns
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Thank You

Vishal Kaushal
Video Analytics Lab, CSE, |ITB
www.vishalkaushal.in



