
FO-definable transformations of infinite strings
Vrunda Dave1, Shankara Narayanan Krishna ∗1, and Ashutosh Trivedi †1,2

1 Indian Institute of Technology Bombay (krishnas,vrunda@cse.iitb.ac.in)
2 University of Colorado Boulder (ashutosh.trivedi@colorado.edu)

Abstract
The theory of regular and aperiodic transformations of finite strings has recently received a lot
of interest. These classes can be equivalently defined using logic (Monadic second-order logic
and first-order logic), two-way machines (regular two-way and aperiodic two-way transducers),
and one-way register machines (regular streaming string and aperiodic streaming string trans-
ducers). These classes are known to be closed under operations such as sequential composition
and regular (star-free) choice; and problems such as functional equivalence and type checking, are
decidable for these classes. On the other hand, for infinite strings these results are only known
for regular transformations: Alur, Filiot, and Trivedi studied transformations of infinite strings
and introduced an extension of streaming string transducers over infinte strings and showed that
they capture monadic second-order definable transformations for infinite strings. In this paper
we extend their work to recover connection for infinite strings among first-order logic definable
transformations, aperiodic two-way transducers, and aperiodic streaming string transducers.

1998 ACM Subject Classification F.1.1

Keywords and phrases Transducers, FO-definability, Infinite Strings

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.

1 Introduction

The beautiful theory of regular languages is the cornerstone of theoretical computer science
and formal language theory. The perfect harmony among the languages of finite words
definable using abstract machines (deterministic finite automata, nondeterministic finite
automata, and two-way automata), algebra (regular expressions and finite monoids), and
logic (monadic second-order logic (MSO) [7]) set the stage for the generalizations of the
theory to not only for the theory of regular languages of infinite words [8, 17], trees [4],
partial orders [22], but more recently for the theory of regular transformations of the finite
strings [6], infinite strings [3, 1], and trees [2]. For the theory of regular transformations
it has been shown that abstract machines (two-way transducers [13] and streaming string
transducers [6]) precisely capture the transformations definable via monadic second-order
logic transformations [10]. For a detailed exposition on the regular theory of languages and
transformations, we refer to the surveys by Thomas [22, 23] and Filiot [14], respectively.

There is an equally appealing and rich theory for first-order logic (FO) definable sub-
classes of regular languages. McNaughton and Papert [18] observed the equivalence between
FO-definability and star-free regular expressions for finite words, while Ladner [16] and
Thomas [24] extended this connection to infinite words. The equivalence of star-free regular

∗ Partly supported by CEFIPRA project AVeRTS.
† Supported by research sponsored by DARPA under agreement number FA8750-15-2-0096. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

© Dave, Krishna, and Trivedi;
licensed under Creative Commons License CC-BY

36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2016).
Editors: Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen; Article No. ; pp. :1–:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 FO-definable transformations of infinite strings

input :

copy 1:

copy 2:

copy 3:

p qt

α
∣∣ α,−1

|ε,+1

` |ε,+1

α
∣∣ α,+1

|ε,+1

¬reach#, α
∣∣ α,+1

reach#, α
∣∣ ε,+1

|ε,−1

(a) (b)

(c)

1 2

#

∣∣∣∣∣∣
x := x#
y := ε

z := ε α|(x, y, z) := (x, αyα, zα)
α

∣∣∣∣∣∣
x := x

y := αyα

z := zα

#|(x, y, z) := (xy#, ε, ε)

a b b b # b a # {a, b}ω

a b b b b a

a b b b b a

{a, b}ω

Figure 1 Transformation f1 given as (a) two-way transducers with look-ahead (b) streaming
string transducers with F ({2}) = xz is the output associated with Muller set {2}, and (c) FO-
definable transformation for the string abbb#ba#{a, b}ω. Here symbol α stands for both symbols a
and b, and the predicate reach# is the lookahead that checks whether string contains a # in future.

expressions and languages defined via aperiodic monoids is due to Schützenberger [20] and
corresponding extension to infinite words is due to Perrin [19]. For a detailed introduction
to FO-definable language we refer the reader to Diekert and Gastin [12].

The results for the theory of FO-definable transformations are relatively recent. While
Courcelle’s definition of logic based transformations [10] provides a natural basis for FO-
definable transformations of finite as well as infinite words, [15] observed that over finite
words, streaming string transducers [6] with an appropriate notion of aperiodicity precisely
capture the same class of transformations. Carton and Dartois [9] introduced aperiodic
two-way transducers for finite words and showed that it precisely captures the notion of
FO-definability. We consider transformations of infinite strings and generalize these results
by showing that appropriate aperiodic restrictions on two-way transducers and streaming
string transducers on infinite strings capture the essence of FO-definable transformations.
Let us study an example to see how the following ω-transformation can be represented using
logic, two-way transducers, and streaming string transducers.

I Example 1 (Example Transformation). Let Σ = {a, b,#}. Consider an ω-transformation
f1 : Σω ⇀ Σω such that it replaces any maximal #-free finite string u by uu, where u is
the reverse of u. Moreover f1 is defined only for strings with finitely many #′s, e.g. for all
w=u1#u2# . . . un#v s.t ui ∈ {a, b}∗ and v ∈ {a, b}ω, we have f1(w)=u1u1# . . .#unun#v.

Logic based transformations. Logical descriptions of transformations of structures—as
introduced by Courcelle [10]—work by introducing a fixed number of copies of the vertices
of the input graph; and the domain, the labels and the edges of the output graph are
defined by MSO formulae with zero, one or two free variables, respectively, interpreted over
the input graph. Figure 1(c) shows a way to express transformation f1 using three copies
of the input with a) logical formula φdom expressing the domain of the transformation, b)
logical formulae φcα(i) (with one free variable) for every copy c ∈ {1, 2} and letter α ∈ {a, b}
expressing the label of a position i for copy c, and c) logical formulae φc,d(i, j) with two free
variables expressing the edge from position i of copy c to position j of copy d. The formulae

Dave, Krishna, and Trivedi XX:3

φdom, φca, and φc,d are interpreted over input structure (in this paper always an infinite
string), and it is easy to see that these formulae for our example can easily be expressed
in MSO. In this paper we study logical transformations expressible with FO and to cover a
larger class of transformations, we use natural order relation ≺ for positions instead of the
successor relation. We will later show that the transformation f1 indeed can be expressed
using FO.

Two-Way Transducers. For finite string transformations, Engelfriet and Hoogeboom [13]
showed that the finite-state transducers when equipped with a two-way input tape have the
same expressive power as MSO transducers, and Carton and Dartois [9] recovered this result
for FO transducers and two-way transducers with aperiodicity restriction. A crucial property
of two-way finite-state transducers exploited in these proofs [13, 9] is the fact that transitions
capable of regular (star-free) look-ahead (i.e., transitions that test the whole input string
against a regular property) do not increase the expressiveness of regular (aperiodic) two-
way transducers. However, this property does not hold in case of ω-strings. In Figure 1(a),
we show a two-way transducer characterizing transformation f1. The transducer uses the
lookahead reach# to check if the remaining part of the string contains a # in future. A
transition labeled < φ,α |β,+1 > of the two-way transducer should be read as: if the current
position on the string satisfies the look-ahead φ and the current symbol is α then output
symbol β and move the input tape head to the right. This transducer works by first checking
if the string contains a # in the future of the current position, if so it moves its head all the
way to the position before # and starts outputting the symbols in reverse, and when it sees
the end-marker or a # it prints the string before the #; however, if there is no # in future,
then the transducer outputs the rest of the string. It is straightforward to verify that this
transducer characterizes the transformation f1. However, in the absence of the look-ahead
a two-way transducer can not express this transformation.

Streaming String Transducers. Alur and Černý [6, 5] proposed a one-way finite-state
transducer model, called the streaming string transducers (SST), that manipulates a finite set
of string variables to compute its output, and showed that they have same expressive power
as MSO transducers. SST, instead of appending symbols to the output tape, concurrently
update all string variables using a concatenation of string variables and output symbols
in a copyless fashion, i.e. no variable occurs more than once in each concurrent variable
update. The transformation of a string is then defined using an output (partial) function F
that associates states with a copyless concatenation of string variables, s.t. if the state q is
reached after reading the string and F (q)=xy, then the output string is the final valuation
of x concatenated with that of y. [3] generalized this by introducing a Muller acceptance
condition to give an SST to characterize ω-transitions. Figure 1(b) shows a streaming string
transducer accepting the transformation f1. It uses three string variables and concurrently
prepends and/or appends these variables in a copyless fashion to construct the output. The
acceptance set and the output is characterized by a Muller set (here {2} and its output xz),
such that if the infinitely visiting states set is {2} then the output is limit of the values
of the concatenation xz. Again, it is easy to verify that SST in Figure 1(b) captures the
transformation f1.

Contributions and Challenges. Our main contributions include the definition of aperi-
odic streaming string transducers and aperiodic two-way transducers, and the proof of the
following key theorem connecting FO and transducers for transformations of infinite strings.

FSTTCS 2016

XX:4 FO-definable transformations of infinite strings

I Theorem 2. Let F : Σω → Γω. Then the following assertions are equivalent:
1. F is first-order definable.
2. F is definable by some aperiodic two-way transducer with star-free look-around.
3. F is definable by some aperiodic streaming string transducers.

We introduce the notion of transition monoids for automata, 2WST, and SST with
the Muller acceptance condition; and recover the classical result proving aperiodicity of a
language using the aperiodicity of the transition monoid of its underlying automaton. The
equivalence between FOT and 2WST with star-free look-around (Section 4), crucially uses
the transition monoid with Muller acceptance, which is necessary to show aperiodicity of the
underlying language of the 2WST. On the other hand, while going from aperiodic SST to
FOT (Section 5), the main difficulty is the construction of the FOT using the aperiodicity of
the SST, and while going from 2WST with star-free look-around to SST (Section 6), the hard
part is to establish the aperiodicity of the SST. Due to space limitation, we only provide key
definitions and sketches of our results—complete proofs and related supplementary material
can be found in longer version of this paper [11].

2 Preliminaries

A finite (infinite) string over alphabet Σ is a finite (infinite) sequence of letters from Σ. We
denote by ε the empty string. We write Σ∗ for the set of finite strings, Σω for the set of
ω-strings over Σ, and Σ∞ = Σ∗ ∪ Σω for the set of finite and ω-strings. A language L over
an alphabet Σ is defined as a set of strings, i.e. L ⊆ Σ∞.

For a string s ∈ Σ∞ we write |s| for its length; note that |s| =∞ for an ω-string s. Let
dom(s) = {1, 2, 3, . . . , } be the set of positions in s. For all i ∈ dom(s) we write s[i] for the
i-th letter of the string s. For two ω-strings s, s′ ∈ Σω, we define the distance d(s, s′) as
1
2j where j=min{k | s[k] 6= s′[k]}. We say that a string s ∈ Σω is the limit of a sequence
s1, s2, . . . of ω-strings si ∈ Σω if for every ε > 0, there is an index nε ∈ N such that for
all i ≥ nε, we have that d(s, si) ≤ ε. Such a limit, if exists, is unique and is denoted as
s = limi→∞ si. For example, bω = limi→∞ bicω.

2.1 Aperiodic Monoids for ω-String Languages
A monoidM is an algebraic structure (M, ·, e) with a non-empty setM , a binary operation ·,
and an identity element e ∈M such that for all x, y, z ∈M we have that (x·(y·z))=((x·y)·z),
and x · e = e · x for all x ∈M . We say that a monoid (M, ·, e) is finite if the set M is finite.
A monoid that we will use in this paper is the free monoid, (Σ∗, ·, ε), which has a set of finite
strings over some alphabet Σ with the empty string ε as the identity.

We define the notion of acceptance of a language via monoids. A morphism (or ho-
momorphism) between two monoids M = (M, ·, e) and M′ = (M ′,×, e′) is a mapping
h : M → M ′ such that h(e) = e′ and h(x · y) = h(x) × h(y). Let h : Σ∗ → M, be a
morphism from free monoid (Σ∗, ·, ε) to a finite monoid (M, ·, e). Two strings u, v ∈ Σ∗
are said to be similar with respect to h denoted u ∼h v, if for some n ∈ N ∪ {∞}, we can
factorize u, v as u = u1u2 . . . un and v = v1v2 . . . vn with ui, vi ∈ Σ+ and h(ui) = h(vi) for
all i. Two ω-strings are h-similar if we can find factorizations u1u2 . . . and v1v2 . . . such that
h(ui) = h(vi) for all i. Let ∼= be the transitive closure of ∼h. ∼= is an equivalence relation.
Note that since M is finite, the equivalence relation ∼= is of finite index. For w ∈ Σ∞ we
define [w]h as the set {u | u ∼= w}. We say that a morphism h accepts a language L ⊆ Σ∞
if w ∈ L implies [w]h ⊆ L for all w ∈ Σ∞.

Dave, Krishna, and Trivedi XX:5

We say that a monoid (M, ., e) is aperiodic [21] if there exists n ∈ N such that for all
x ∈ M , xn = xn+1. Note that for finite monoids, it is equivalent to require that for all
x ∈M , there exists n ∈ N such that xn = xn+1. A language L ⊆ Σ∞ is said to be aperiodic
iff it is recognized by some morphism to a finite and aperiodic monoid [11].

2.2 First-Order Logic for ω-String Languages
A string s ∈ Σω can be represented as a relational structure Ξs=(dom(s),�s, (Lsa)a∈Σ),
called the string model of s, where dom(s) = {1, 2, . . .} is the set of positions in s, �s is
a binary relation over the positions in s characterizing the natural order, i.e. (x, y) ∈�s if
x ≤ y; Lsa, for all a ∈ Σ, are the unary predicates that hold for the positions in s labeled
with the letter a, i.e., Lsa(i) iff s[i] = a, for all i ∈ dom(s). When it is clear from context we
will drop the superscript s from the relations �s and Lsa.

Properties of string models over the alphabet Σ can be formalized by first-order logic
denoted by FO(Σ). Formulas of FO(Σ) are built up from variables x, y, . . . ranging over
positions of string models along with atomic formulae of the form x=y, x�y, and La(x) for
all a ∈ Σ where formula x=y states that variables x and y point to the same position, the
formula x � y states that position corresponding to variable x is not larger than that of
y, and the formula La(x) states that position x has the label a ∈ Σ. Atomic formulae are
connected with propositional connectives ¬, ∧, ∨, →, and quantifiers ∀ and ∃ that range
over node variables and we use usual semantics for them. We say that a variable is free in
a formula if it does not occur in the scope of some quantifier. A sentence is a formula with
no free variables. We write φ(x1, x2, . . . , xk) to denote that at most the variables x1, . . . , xk
occur free in φ. For a string s ∈ Σ∗ and for positions n1, n2, . . . , nk ∈ dom(s) we say that
s with valuation ν = (n1, n2, . . . , nk) satisfies the formula φ(x1, x2, . . . , xk) and we write
(s, ν) |= φ(x1, x2, . . . , xk) or s |= φ(n1, n2, . . . , nk) if formula φ with ni as the interpretation
of xi is satisfied in the string model Ξs. The language defined by an FO sentence φ is
L(φ) def= {s ∈ Σω : Ξs |= φ}. We say that a language L is FO-definable if there is an FO
sentence φ such that L = L(φ). The following is a well known result.

I Theorem 3. [18][20] A language L ⊆ Σ∗ is FO-definable iff it is aperiodic.

2.3 Aperiodic Muller Automata for ω-String Languages
A deterministic Muller automaton (DMA) is a tuple A = (Q, q0,Σ, δ, F) where Q is a finite
set of states, q0 ∈ Q is the initial state, Σ is an input alphabet, δ : Q×Σ→ Q is a transition
function, and F ⊆ 2Q are the accepting (Muller) sets. For states q, q′ ∈ Q and letter a ∈ Σ
we say that (q, a, q′) is a transition of the automaton A if δ(q, a) = q′ and we write q a−→ q′.
We say that there is a run of A over a finite string s = a1a2 . . . an ∈ Σ∗ from state p to
state q if there is a finite sequence of transitions 〈(p0, a1, p1), (p1, a2, p2), . . . , (pn−1, an, pn)〉 ∈
(Q×Σ×Q)∗ with p = p0 and q = pn. We write Lp,q for the set of finite strings w such that
there is a run of A over w from p to q. We say that there is a run of A over an ω-string s =
a1a2 . . . ∈ Σω if there is a sequence of transitions 〈(q0, a1, q1), (q1, a2, q2), . . .〉 ∈ (Q×Σ×Q)ω.
For an infinite run r, we denote by Ω(r) the set of states that occur infinitely often in r. We
say that an ω-string w is accepted by a Muller automaton A if the run of A on w is such
that Ω(r) ∈ F and we write L(A) for the set of all ω-strings accepted by A.
A Muller automaton A is aperiodic iff there exists some m≥1 s.t. um∈Lp,q iff um+1∈Lp,q
for all u ∈ Σ∗ and p, q ∈ Q. Another equivalent way to define aperiodicity is using the
transition monoid, which, to the best of our knowledge, has not been defined in the literature
for Muller automata. Given a DMA A=(Q, q0,Σ,∆, {F1, . . . , Fn}), we define the transition

FSTTCS 2016

XX:6 FO-definable transformations of infinite strings

monoid MA=(MA,×,1) of A as follows: MA is a set of |Q| × |Q| square matrices over
({0, 1} ∪ 2Q)n ∪ {⊥}. Matrix multiplication × is defined for matrices in MA with identity
element 1 ∈ MA, where 1 is the matrix whose diagonal entries are (∅, ∅, . . . , ∅) and non-
diagonal entries are all ⊥’s. Formally, MA= {Ms : s ∈ Σ∗} is defined using matrices Ms for
strings s ∈ Σ∗ s.t. Ms[p][q]=⊥ if there is no run from p to q over s in A. Otherwise, let
P be the set of states (excluding p and q) witnessed in the unique run from p to q. Then
Ms[p][q] = (x1, . . . , xn) ∈ ({0, 1} ∪ 2Q)n where (1) xi = 0 iff ∃t ∈ P ∪ {p, q}, t /∈ Fi; (2)
xi = 1 iff P ∪ {p, q} = Fi, and (3) xi = P ∪ {p, q} iff P ∪ {p, q} ⊂ Fi. It is easy to see that
Mε = 1, since ε takes a state to itself and nowhere else. The operator × is simply matrix
multiplication for matrices in MA, however we need to define addition ⊕ and multiplication
� for elements ({0, 1} ∪ 2Q)n ∪ {⊥} of the matrices. We have α1 � α2 = ⊥ if α1 = ⊥ or
α2 = ⊥, and if α1 = (x1, . . . , xn) and α2 = (y1, . . . , yn) then α1 � α2 = (z1, . . . , zn) s.t.:

zi =

0 if xi = 0 or yi = 0
1 if (xi = yi = 1) or if (xi, yi ⊂ Fi and xi ∪ yi = Fi)
1 if (xi = 1 and yi ⊂ Fi) or (yi = 1 and xi ⊂ Fi)
xi ∪ yi if xi, yi ⊂ Fi and xi ∪ yi ⊂ Fi

(?)

Due to determinism, we have that for every matrixMs and every state p there is at most
one state q such that Ms[p][q] 6= ⊥ and hence the only addition rule we need to introduce
is α ⊕ ⊥ = ⊥ ⊕ α = α. It is easy to see that (MA,×,1) is a monoid (a proof is deferred
to the [11]). It is straightforward to see that a Muller automaton is aperiodic if and only
if its transition monoid is aperiodic. [11] gives a proof showing that a language L ⊆ Σω is
aperiodic iff there is an aperiodic DMA accepting it.

3 Aperiodic Transformations

In this section we formally introduce three models to express FO-transformations, and pre-
pare the machinery required to prove their expressive equivalence in the rest of the paper.

3.1 First-Order Logic Definable Transformations
Courcelle [10] initiated the study of structure transformations using MSO logic. His main
idea was to define a transformation (w,w′) ∈ R by defining the string model of w′ using
a finite number of copies of positions of the string model of w. The existence of positions,
various edges, and position labels are then given as MSO(Σ) formulas. We study a restriction
of his formalism to use first-order logic to express string transformations.

I Definition 4. An FO string transducer is a tuple T=(Σ,Γ, φdom, C, φpos, φ�) where:
Σ and Γ are finite input and output alphabets;
φdom is a closed FO(Σ) formula characterizing the domain of the transformation;
C= {1, 2, . . . , n} is a finite index set;
φpos=

{
φcγ(x) : c ∈ C and γ ∈ Γ

}
is a set of FO(Σ) formulae with a free variable x;

φ�=
{
φc,d� (x, y) : c, d ∈ C

}
is a set of FO(Σ) formulae with two free variables x and y.

The transformation JT K defined by T is as follows. A string s with Ξs = (dom(s),�, (La)a∈Σ)
is in the domain of JT K if s |= φdom and the output string w with structure
M = (D,�M , (LMγ)γ∈Γ) is such that

D = {vc : v ∈ dom(s), c ∈ C and φc(v)} is the set of positions where
φc(v) def= ∨γ∈Γ φcγ(v);

Dave, Krishna, and Trivedi XX:7

�M ⊆D×D is the ordering relation between positions and it is such that for v, u ∈ dom(s)
and c, d ∈ C we have that vc �M ud if w |= φc,d� (v, u); and
for all vc ∈ D we have that LMγ (vc) iff φcγ(v).

Observe that the output is unique and therefore FO transducers implement functions. A
string s ∈ Σω can be represented by its string-graph with dom(s) = {i ∈ N}, �= {(i, j) | i ≤
j} and La(i) iff s[i] = a for all i. From now on, we denote the string-graph of s as s only. We
say that an FO transducer is a string-to-string transducer if its domain is restricted to string
graphs and the output is also a string graph. We say that a string-to-string transformation
is FO-definable if there exists an FO transducer implementing the transformation. We write
FOT for the set of FO-definable string-to-string ω-transformations.

I Example 5. Figure 1(c) shows a transformation for an FOT that implements the trans-
formation f1 : Σ∗#{a, b}ω → Σω, where Σ = {a, b,#}, by replacing every maximal # free
string u with uu. Let is_string# be an FO formula that defines a string that contains
a #, and let reach#(x) be an FO formula that is true at a position which has a # at a
later position. To define the FOT formally, we have φdom = is_string#, φ1

γ(x) = φ2
γ(x) =

Lγ(x) ∧ ¬L#(x) ∧ reach#(x), since we only keep the non # symbols that can “reach” a #
in the input string in the first two copies. φ3

γ(x) = L#(x) ∨ (¬L#(x) ∧ ¬reach#(x)), since
we only keep the #’s, and the infinite suffix from where there are no #’s. The full list of
formulae φi,j can be seen in [11].

3.2 Two-way Transducers (2WST)
A 2WST is a tuple T = (Q,Σ,Γ, q0, δ, F) where Σ,Γ are respectively the input and output
alphabet, q0 is the initial state, δ is the transition function and F ⊆ 2Q is the acceptance
set. The transition function is given by δ : Q×Σ→ Q×Γ∗×{1, 0,−1}. A configuration of
the 2WST is a pair (q, i) where q ∈ Q and i ∈ N is the current position of the input string.
A run r of a 2WST on a string s ∈ Σω is a sequence of transitions (q0, i0=0) a1/c1,dir−−−−−−→
(q1, i1) a2/c2,dir−−−−−−→ (q2, i2) · · · where ai ∈ Σ is the input letter read and ci ∈ Γ∗ is the output
string produced during a transition and ijs are the positions updated during a transition
for all j ∈ dom(s). dir is the direction, {1, 0,−1}. W.l.o.g. we can consider the outputs to
be over Γ ∪ {ε}. The output out(r) of a run r is simply a concatenation of the individual
outputs, i.e. c1c2 · · · ∈ Γ∞. We say that the transducer reads the whole string s when
sup {in | 0 ≤ n < |r|}=∞. The output of s, denoted T (s) is defined as out(r) only if Ω(r) ∈
F and r reads the whole string s. We write JT K for the transformation captured by T .

Transition Monoid. The transition monoid of a 2WST T = (Q,Σ,Γ, q0, δ, {F1, . . . , Fn}) is
the transition monoid of its underlying automaton. However, since the 2WST can read their
input in both directions, the transition monoid definition must allow for reading the string
starting from left side and leaving at the left (left-left) and similar other behaviors (left-right,
right-left and right-right). Following [9], we define the behaviors Bxy(w) of a string w for
x, y ∈ {`, r}. B`r(w) is a set consisting of pairs (p, q) of states such that starting in state p
in the left side of w the transducer leaves w in right side in state q. In the example in figure
1(a), we have B`r(ab#) = {(t, t), (p, t), (q, t)} and Brr(ab#) = {(q, t), (t, t), (p, q)}. Two
words w1, w2 are “equivalent” if their left-left, left-right, right-left and right-right behaviors
are same. That is, Bxy(w1) = Bxy(w2) for x, y ∈ {`, r}. The transition monoid of T is
the conjunction of the 4 behaviors, which also keeps track, in addition, the set of states
witnessed in the run, as shown for the deterministic Muller automata earlier. For each

FSTTCS 2016

XX:8 FO-definable transformations of infinite strings

string w ∈ Σ∗, x, y ∈ {`, r}, and states p, q, the entries of the matrix Mxy
u [p][q] are of

the form ⊥, if there is no run from p to q on word u, starting from the side x of u and
leaving it in side y, and is (x1, . . . xn) otherwise, where xi is defined exactly as in section
2.3. For equivalent words u1, u2, we have Mxy

u1
[p][q] = Mxy

u2
[p][q] for all x, y ∈ {`, r} and

states p, q. Addition and multiplication of matrices are defined as in the case of Muller
automata. See [11] for more details. Note that behavioral composition is quite complex, due
to left-right movements. In particular, it can be seen from the example that B`r(ab#a#) =
B`r(ab#)B``(a#)Brr(ab#)B`r(a#). Since we assume that the 2WST T is deterministic
and completely reads the input string α ∈ Σω, we can find a unique factorization α =
[α0 . . . αp1][αp1+1 . . . αp2] . . . such that the run of A on each α-block progresses from left to
right, and each α-block will be processed completely. That is, one can find a unique sequence
of states qp1 , qp2 , . . . such that the 2WST starting in initial state q0 at the left of the block
α0 . . . αp1 leaves it at the right in state qp1 , starts the next block αp1+1 . . . αp2 from the left
in state qp1 and leaves it at the right in state qp2 and so on.

We consider the languages Lxypq for x, y ∈ {`, r}, where `, r respectively stand for left and
right. L``pq stands for all strings w such that, starting at state p at the left of w, one leaves
the left of w in state q. Similarly, Lr`pq stands for all strings w such that starting at the right
of w in state p, one leaves the left of w in state q. In figure 1(a), note that starting on the
right of ab# in state t, we leave it on the right in state t, while we leave it on the left in
state p. So ab# ∈ Lrrtt , Lr`tp. Also, ab# ∈ Lrrpq.

A 2WST is said to be aperiodic iff for all strings u ∈ Σ∗, all states p, q and x, y ∈ {l, r},
there exists some m ≥ 1 such that um ∈ Lxypq iff um+1 ∈ Lxypq .

Star-Free Lookaround. We wish to introduce aperiodic 2WST that are capable of capturing
FO-definable transformations. However, as we discussed earlier (see page 3 in the paragraph
on two-way transducers) 2WST without look-ahead are strictly less expressive than MSO
transducers. To remedy this we study aperiodic 2WSTs enriched with star-free look-ahead
(star-free look-back can be assumed for free).

An aperiodic 2WST with star-free look-around (2WSTsf) is a tuple (T,A,B) where A is
an aperiodic Muller look-ahead automaton and B is an aperiodic look-behind automaton,
resp., and T = (Σ,Γ, Q, q0, δ, F) is an aperiodic 2WST as defined earlier except that the
transition function δ : Q×QB×Σ×QA → Q×Γ×{−1, 0,+1} may consult look-ahead and
look-behind automata to make its decisions. Let s ∈ Σω be an input string, and L(A, p) be
the set of infinite strings accepted by A starting in state p. Similarly, let L(B, r) be the set
of finite strings accepted by B starting in state r. We assume that 2WSTsf are deterministic
i.e. for every string s ∈ Σω and every input position i ≤ |s|, there is exactly one state p ∈ QA
and one state r ∈ QB such that s(i)s(i+ 1) . . . ∈ L(A, p) and s(0)s(1) . . . s(i− 1) ∈ L(B, r).
If the current configuration is (q, i) and δ(q, r, s(i), p) = (q′, z, d) is a transition, such that
the string s(i)s(i+ 1) . . . ∈ L(A, p) and s(0)s(1) . . . s(i− 1) ∈ L(B, r), then 2WSTsf writes
z ∈ Γ on the output tape and updates its configuration to (q′, i + d). Figure 1(a) shows a
2WST with star-free look-ahead reach#(x) capturing the transformation f1 (details in [11]).

3.3 Streaming ω-String Transducers (SST)
Streaming string transducers(SSTs) manipulate a finite set of string variables to compute
their output. In this section we introduce aperiodic SSTs for infinite strings. Let X be a
finite set of variables and Γ be a finite alphabet. A substitution σ is defined as a mapping
σ : X → (Γ ∪ X)∗. A valuation is defined as a substitution σ : X → Γ∗. Let SX ,Γ be the set
of all substitutions [X → (Γ ∪ X)∗]. Any substitution σ can be extended to σ̂ : (Γ ∪ X)∗ →

Dave, Krishna, and Trivedi XX:9

(Γ ∪ X)∗ in a straightforward manner. The composition σ1σ2 of two substitutions σ1 and
σ2 is defined as the standard function composition σ̂1σ2, i.e. σ̂1σ2(x) = σ̂1(σ2(x)) for all
x ∈ X . We say that a string u ∈ (Γ ∪ X)∗ is copyless (or linear) if each x ∈ X occurs at
most once in u. A substitution σ is copyless if σ̂(u) is copyless, for all linear u ∈ (Γ ∪ X)∗ .

I Definition 6. A streaming ω-string transducer (SST) is a tuple T = (Σ,Γ, Q, q0, δ,X , ρ, F)
Σ and Γ are finite input and output alphabets;
Q is a finite set of states with initial state q0;
δ : Q× Σ→ Q is a transition function and X is a finite set of variables;
ρ : (Q×Σ)→ SX ,Γ is a variable update function to copyless substitutions such that any
variable x occurs at most once on the right hand side of a simultaneous substitution;
F : 2Q ⇀ X ∗ is an output function such that for all P ∈ dom(F) the string F (P) is
copyless of form x1 . . . xn, and for q, q′ ∈ P and a ∈ Σ s.t. q′ = δ(q, a) we have
ρ(q, a)(xi) = xi for all i < n and ρ(q, a)(xn) = xnu for some u ∈ (Γ ∪ X)∗.

The concept of a run of an SST is defined in an analogous manner to that of a Muller
automaton. The sequence 〈σr,i〉0≤i≤|r| of substitutions induced by a run r = q0

a1−→ q1
a2−→

q2 . . . is defined inductively as the following: σr,i=σr,i−1ρ(qi−1, ai) for 0 < i ≤ |r| and
σr,0 = x ∈ X 7→ ε. The output T (r) of an infinite run r of T is defined only if F (r) is
defined and equals T (r) def= limi→∞〈σr,i(F (r))〉, when the limit exists. If not, we pad ⊥ω to
the obtained finite string to get limi→∞〈σr,i(F (r))⊥ω〉 as the infinite output string.

The assumptions on the output function F in the definition of an SST ensure that this
limit exists whenever F (r) is defined. Indeed, when a run r reaches a point from where it
visits only states in P , these assumptions enforce the successive valuations of F (P) to be an
increasing sequence of strings by the prefix relation. The padding by unique letter ⊥ ensures
that the output is always an ω-string. The output T (s) of a string s is then defined as the
output T (r) of its unique run r. The transformation JT K defined by an SST T is the partial
function {(s, T (s)) : T (s) is defined}. See [11] for an example. We remark that for every
SST T = (Σ,Γ, Q, q0, δ,X , ρ, F), its domain is always an ω-regular language defined by the
Muller automaton (Σ, Q, q0, δ,dom(F)), which can be constructed in linear time. However,
the range of an SST may not be ω-regular. For instance, the range of the SST-definable
transformation an#ω 7→ anbn#ω (n ≥ 0) is not ω-regular.

Aperiodic Streaming String Transducers. We define the notion of aperiodic SSTs by intro-
ducing an appropriate notion of transition monoid for transducers. The transition monoid
of an SST T is based on the effect of a string s on the states as well as on the variables.
The effect on variables is characterized by, what we call, flow information that is given as a
relation that describes the number of copies of the content of a given variable that contribute
to another variable after reading a string s.

Let T = (Σ,Γ, Q, q0, δ,X , ρ, F) be an SST. Let s be a string in Σ∗ and suppose that
there exists a run r of T on s. Recall that this run induces a substitution σr that maps each
variable X ∈ X to a string u ∈ (Γ ∪ X)∗. For string variables X,Y ∈ X , states p, q ∈ Q,
and n ∈ N we say that n copies of Y flow to X from p to q if there exists a run r on
s ∈ Σ∗ from p to q, and Y occurs n times in σr(X). We extend the notion of transition
monoid for the Muller automata as defined in Section 2 for the transition monoid for SSTs
to equip it with variables. Formally, the transition monoidMT=(MT ,×,1) of an SST T =
(Σ,Γ, Q, q0, δ,X , ρ, {F1, . . . , Fn}) is such thatMT is a set of |Q×X|×|Q×X| square matrices
over (N×({0, 1}∪2Q)n)∪{⊥} along with matrix multiplication × defined for matrices inMT

and identity element 1 ∈ MT is the matrix whose diagonal entries are (1, (∅, ∅, . . . , ∅)) and
non-diagonal entries are all ⊥’s. Formally MT= {Ms : s ∈ Σ∗} is defined using matrices

FSTTCS 2016

XX:10 FO-definable transformations of infinite strings

Ms for strings s ∈ Σ∗ s.t. Ms[(p,X)][(q, Y)]=⊥ if there is no run from state p to state q
over s in T , otherwise Ms[(p,X)][(q, Y)] = (k, (x1, . . . , xn)) ∈ (N× ({0, 1} ∪ 2Q)n) where xi
is defined exactly as in section 2.3, and k copies of variable X flow to variable Y from state
p to state q after reading s.

We write (p,X) u
α (q, Y) for Mu[(p,X)][(q, Y)] = α.

It is easy to see that Mε = 1. The operator × is simply matrix multiplication for
matrices in MT , however we need to define addition ⊕ and multiplication � for elements
({0, 1} ∪ 2Q)n ∪ {⊥} of the matrices. We have α1 � α2 = ⊥ if α1 = ⊥ or α2 = ⊥, and if
α1 = (k1, (x1, . . . , xn)) and α2 = (k2, (y1, . . . , yn)) then α1 � α2 = (k1 × k2, (z1, . . . , zn)) s.t.
for all 1 ≤ i ≤ n zi are defined as in (?) from Section 2.3. Note that due to determinism
of the SSTs we have that for every matrix Ms and every state p there is at most one
state q such that Ms[p][q] 6= ⊥ and hence the only addition rules we need to introduce is
α ⊕ ⊥ = ⊥ ⊕ α = α, 0 ⊕ 0 = 0, 1 ⊕ 1 = 1 and κ ⊕ κ = κ for κ ⊆ Q. It is easy to see that
(MT ,×,1) is a monoid and we give a proof in [11]. We say that the transition monoid MT

of an SST T is 1-bounded if in all entries (j, (x1, . . . , xn)) of the matrices of MT , j ≤ 1. A
streaming string transducer is aperiodic if its transition monoid is aperiodic.

4 FOTs ≡ Aperiodic 2WSTsf

I Theorem 7. A transformation f : Σω → Γω is FOT-definable if and only if it is definable
using an aperiodic two way transducer with star-free look-around.

Proof (Sketch). This proof is in two parts.
Aperiodic 2WSTsf ⊆ FOT. We first show that given an aperiodic 2WSTsf A, we
can effectively construct an FOT that captures the same transduction as A over infinite
words. Let A = (Q,Σ,Γ, q0, δ, F) be an aperiodic 2WSTsf , where each transition outputs
at most one letter. Note that this is without loss of generality, since we can output
any longer string by having some extra states. Given A, we construct the FOT T =
(Σ,Γ, φdom, C, φpos, φ≺) that realizes the transduction of A. The formula φdom is the
conjunction of formulae is_string and ϕ where ϕ is a FO formula that captures the
set of accepted strings of A (obtained by proving L(A) is aperiodic [11]) and is_string
is a FO formula that specifies that the input graph is a string (see [11]). The copies of
the FOT are the states of A. For any two positions x, y of the input string, and any two
copies q, q′, we need to define φq,q

′

≺ . This is simply describing the behaviour of A on the
substring from position x to position y of the input string u, assuming at position x, we
are in state q, and reach state q′ at position y. The following lemma (proof in [11]) gives
an FO formula ψq,q′(x, y) describing this.
I Lemma 8. Let A be an aperiodic 2WSTsf with the Muller acceptance condition. Then
for all pairs of states q, q′, there exists an FO formula ψq,q′(x, y) such that for all strings
s ∈ Σω and a pair of positions x, y of s, s |= ψq,q′(x, y) iff there is a run from state q
starting at position x of s that reaches position y of s in state q′.
An edge exists between position x of copy q and position y of copy q′ iff the input string
u |= ψq,q′(x, y). The formulae φqγ(x) for each copy q specifies the output at position x in
state q. We have to capture that position x is reached from the initial position in state q,
and also the possible outputs produced while in state q at x. The transition function δ
gives us these symbols. The formula

∨
δ(q,a)=(q′,dir,γ) La(x) captures the possible output

symbols. To state that we reach q at position x, we say ∃y[first(y) ∧ ψq0,q(y, x)]. The
conjunction of these two formulae gives φqγ(x). This completes the FOT T .

Dave, Krishna, and Trivedi XX:11

FOT ⊆ Aperiodic 2WSTsf . Given an FOT, we show that we can construct an aperiodic
2WST with star-free look-around capturing the same transduction over ω-words. For this,
we first show that given an FOT, we can construct 2WST enriched with FO instructions
that captures the same transduction as the FOT. The idea of the proof follows [13], where
one first defines an intermediate model of aperiodic 2WST with FO instructions instead
of look-around. Then we show FOT ⊆ 2WSTfo ⊆ 2WSTsf , to complete the proof.

The omitted details can be found in [11]. J

5 Aperiodic SST ⊂ FOT

I Lemma 9. A transformation is FO-definable if it is aperiodic-SST definable.

We show that every aperiodic 1-bounded SST definable transformation is definable using
FO-transducers. A crucial component in the proof of this lemma is to show that the variable
flow in the aperiodic 1-bounded SST is FO-definable ([11]). To construct the FOT, we make
use of the output structure for SST. It is an intermediate representation of the output,
and the transformation of any input string into its SST-output structure will be shown to
be FO-definable. For any SST T and string s ∈ dom(T), the SST-output structure of s
is a relational structure GT (s) obtained by taking, for each variable X ∈ X , two copies of
dom(s), respectively denoted by Xin and Xout. For notational convenience we assume that
these structures are labeled on the edges. A pair (X, i) is useful if the content of variable X
before reading s[i] will be part of the output after reading the whole string s. This structure
satisfies the following invariants: for all i ∈ dom(s), (1) the nodes (Xin, i) and (Xout, i)
exist only if (X, i) is useful, and (2) there is a directed path from (Xin, i) to (Xout, i) whose
labels are same as variable X computed by T after reading s[i].

Xin

Xout

Y in

Y out

ε

ε

a

b

aaa

ε

ε

c

e

f

ε

ε

ε

ε

ε

ε

ε

ε

ε

bc

ε

ε

bc

ε

run q0 q1 q2 q3 q4 q5 q6

X := aXb

Y := aaa

X := c

Y := Y

X := X

Y := eY f

X := X

Y := Y

X := X

Y := Y bc

X := XY

Y := bc

We define SST-output structures formally in [11], however, the illustration above shows
an SST-output structure. We show only the variable updates. Dashed arrows represent vari-
able updates for useless variables, and therefore does not belong the SST-output structure.
The path from (Xin, 6) to (Xout, 6) gives the contents of X (ceaaafbc) after 6 steps. We
write OT for the set of strings appearing in right-hand side of variable updates.

We next show that the transformation that maps an ω-string s into its output structure
is FO-definable, whenever the SST is 1-bounded and aperiodic. Using the fact that variable
flow is FO-definable, we show that for any two variables X,Y , we can capture in FO, a path
from (Xd, i) to (Y e, j) for d, e ∈ {in, out} in GT (s) and all positions i, j.

I Lemma 10. Let T be an aperiodic,1-bounded SST T . For all X,Y ∈ X and all
d, d′ ∈ {in, out}, there exists an FO[Σ]-formula pathX,Y,d,d′(x, y) with two free variables
such that for all strings s ∈ dom(T) and all positions i, j ∈ dom(s), s |= pathX,Y,d,d′(i, j) iff
there exists a path from (Xd, i) to (Y d′

, j) in GT (s).

FSTTCS 2016

XX:12 FO-definable transformations of infinite strings

The proof of Lemma 10 is in longer version [11]. As seen in [11] (in Proposition 4) one can
write a formula φq(x) (to capture the state q reached) and formula ψRecP (to capture the
recurrence of a Muller set P) in an accepting run after reading a prefix. For each variable
X ∈ X , we have two copies Xin and Xout that serve as the copy set of the FOT. As given
by the SST output-structure, for each step i, state q and symbol a, a copy is connected
to copies in the previous step based on the updates ρ(q, a). The full details of the FOT
construction handling the Muller acceptance condition of the SST are in [11].

6 Aperiodic 2WSTsf ⊂ Aperiodic SST

We show that given an aperiodic 2WST A = (Σ,Γ, Q, q0, δ, F) with star-free look around
over ω-words, we can construct an aperiodic SST T that realizes the same transformation.

I Lemma 11. For every transformation definable with an aperiodic 2WST with star-free
look around, there exists an equivalent aperiodic 1-bounded SST.

Proof. While the idea of the construction is similar to [3], the main challenge is to eliminate
the star-free look-around for infinite strings from the SST, preserving aperiodicity. As an
intermediate model we introduce streaming ω-string transducers with star-free look-around
SSTsf that can make transitions based on some star-free property of the input string. We
first show that for every aperiodic 2WSTsf one can obtain an aperiodic SSTsf , and then
prove that the star-free look arounds can be eliminated from the SSTsf .

(2WSTsf ⊂ SSTsf). One of the key observations in the construction is that a 2WSTsf
can move in either direction, while SSTsf cannot. Since we start with a deterministic
2WSTsf that reads the entire input string, it is clear that if a cell i is visited in a state
q, then we never come back to that cell in the same state. We keep track in each cell i,
with current state q, the state f(q) the 2WSTsf will be in, when it moves into cell i+ 1
for the first time. The SSTsf will move from state q in cell i to state f(q) in cell i + 1,
keeping track of the output produced in the interim time; that is, the output produced
between q in cell i and f(q) in cell i + 1 must be produced by the SSTsf during the
move. This output is stored in a variable Xq. The state of the SSTsf at each point of
time thus comprises of a pair (q, f) where q is the current state of the 2WSTsf , and f
is the function which computes the state that q will evolve into, when moving to the
right, the first time. In each cell i, the state of the SST will coincide with the state
the 2WSTsf is in, when reading cell i for the first time. In particular, in the SSTsf ,
we define δ′((q, f), r, a, p) = (f ′(q), f ′) where f ′(q) = f ′(f(t)) if in the 2WSTsf we have
δ(q, r, a, p) = (t, γ,−1). f ′(q) gives the state in which the 2WSTsf will move to the right
of the current cell, but clearly this depends on f(t), the state in which the 2WSTsf will
move to the right from the previous cell. The variables of the SSTsf are of the form
Xq, where q is the current state of the SSTsf . Update of Xq depends on whether the
2WSTsf moves left, right or stays in state q. For example, Xq is updated as Xtρ(Xf(t))
if in the 2WST, δ(q, r, a, p) = (t, γ,−1) and f(t) is defined. The definition is recursive,
and Xt handles the output produced from state t in cell i− 1. We allow all subsets of Q
as Muller sets of the SSTsf , and keep any checks on these, as part of the look-ahead.
A special variable O is used to define the output of the Muller sets, by simply updating
it as O := Oρ(Xq) corresponding to the current state q of the 2WSTsf (and (q, f) is the
state of the SSTsf). The details of the correctness of construction are in [11].
(SSTsf ⊂ SST). An aperiodic SST with star-free lookaround is a tuple (T,B,A) where
A = (PA,Σ, δA, Pf) is an aperiodic, deterministic Muller automaton called a look-ahead

Dave, Krishna, and Trivedi XX:13

automaton, B = (PB ,Σ, δB) is an aperiodic automaton called the look-behind auto-
maton, and T is a tuple (Σ,Γ, Q, q0, δ,X , ρ, F) where Σ, Γ, Q, q0, X , ρ, and F are
defined in the same fashion as for ω-SSTs, and δ : Q × PB × Σ × PA → Q is the
transition function. On a string a1a2 . . . , while processing symbol ai, we have in the
SSTsf , δ((q, pB , pA), ai) = q′, (and the next transition is δ((q′, p′B , p′A), ai+1)) if (i) the
prefix a1a2 . . . ai ∈ L(pA), (ii) the suffix ai+1ai+2 · · · ∈ L(pB), where L(pA) (L(pB))
denotes the language accepted starting in state pA (pB). We further assume that the
look-aheads are mutually exclusive, i.e. for all symbols a ∈ Σ, all states q ∈ Q, and
all transitions q′ = δ(q, r, a, p) and q′′ = (q, r′, a, p′), we have that L(Ap) ∩ L(Ap′) = ∅
and L(Br) ∩ L(Br′) = ∅. In [11], we show that for any input string, there is atmost
one useful, accepting run in the SSTsf , while in Lemma 29 in [11], we show that adding
(aperiodic) look-arounds to SST does not increase their expressiveness.

The proof sketch is now complete. J

7 Conclusion
We extended the notion of aperiodicity from finite string transformations to that on infinite
strings. We have shown a way to generalize transition monoids for deterministic Muller
automata to streaming string transducers and two-way finite state transducers that capture
the FO definable global transformations. An interesting and natural next step is to invest-
igate LTL-definable transformations, their connection with FO-definable transformations,
and their practical applications in verification and synthesis.

References

1 R. Alur, A. Durand-Gasselin, and A. Trivedi. From monadic second-order definable string
transformations to transducers. In LICS, pages 458–467, 2013.

2 Rajeev Alur and Loris D’Antoni. Automata, Languages, and Programming: 39th Inter-
national Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II,
chapter Streaming Tree Transducers, pages 42–53. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

3 Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of infin-
ite strings. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in
Computer Science, LICS ’12, pages 65–74, Washington, DC, USA, 2012. IEEE Computer
Society.

4 Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1–
16:43, May 2009.

5 Rajeev Alur and Pavol Černý. Streaming transducers for algorithmic verification of single-
pass list-processing programs. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’11, pages 599–610. ACM,
2011.

6 Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers. In Kamal
Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS 2010), volume 8 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 1–12, Dagstuhl, Germany, 2010.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

7 J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Mathemat-
ische Logik und Grundlagen der Mathematik, 6(1–6):66–92, 1960.

FSTTCS 2016

XX:14 FO-definable transformations of infinite strings

8 J. R. Büchi. On a decision method in restricted second-order arithmetic. In Int. Congr.
for Logic Methodology and Philosophy of Science, pages 1–11. Standford University Press,
Stanford, 1962.

9 Olivier Carton and Luc Dartois. Aperiodic two-way transducers and fo-transductions. In
24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10,
2015, Berlin, Germany, pages 160–174, 2015.

10 B. Courcelle. Monadic second-order definable graph transductions: a survey. Theoretical
Computer Science, 126(1):53–75, 1994.

11 Vrunda Dave, Shankara Narayanan Krishna, and Ashutosh Trivedi. Fo-definable trans-
formations of infinite strings. CoRR, abs/1607.04910, 2016.

12 V. Diekert and P. Gastin. First-order definable languages. pages 261–306, 2008.
13 J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and two-way

finite-state transducers. ACM Trans. Comput. Logic, 2:216–254, 2001.
14 Emmanuel Filiot. Logic and Its Applications: 6th Indian Conference, ICLA 2015, Mumbai,

India, January 8-10, 2015. Proceedings, chapter Logic-Automata Connections for Trans-
formations, pages 30–57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

15 Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi. First-order defin-
able string transformations. In 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New
Delhi, India, pages 147–159, 2014.

16 Richard E. Ladner. Application of model theoretic games to discrete linear orders and
finite automata. Information and Control, 33(4):281–303, 1977.

17 R. McNaughton. Testing and generating infinite sequences by a finite automaton. Inform.
Contr., 9:521–530, 1966.

18 R. McNaughton and S. Papert. Counter-free automata. M.I.T. Research Monograph, 65,
1971. With an appendix by William Henneman.

19 Dominique Perrin. Mathematical Foundations of Computer Science 1984: Proceedings,
11th Symposium Praha, Czechoslovakia September 3–7, 1984, chapter Recent results on
automata and infinite words, pages 134–148. Springer Berlin Heidelberg, 1984.

20 M.P. Schuetzenberger. On finite monoids having only trivial subgroups. Information and
Control, 8(2):190 – 194, 1965.

21 H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston,
1994.

22 W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, pages
389–455. Springer, 1996.

23 W. Thomas. Ehrenfeucht games, the composition method, and the monadic theory of
ordinal words. In In Structures in Logic and Computer Science: A Selection of Essays in
Honor of A. Ehrenfeucht, Lecture, pages 118–143. Springer-Verlag, 1997.

24 Wolfgang Thomas. Star-free regular sets of ω-sequences. Information and Control,
42(2):148–156, 1979.

	Introduction
	Preliminaries
	Aperiodic Monoids for -String Languages
	First-Order Logic for -String Languages
	Aperiodic Muller Automata for -String Languages

	Aperiodic Transformations
	First-Order Logic Definable Transformations
	Two-way Transducers (2WST)
	Streaming -String Transducers (SST)

	FOTs Aperiodic 2WSTsf
	Aperiodic SST FOT
	Aperiodic 2WSTsf Aperiodic SST
	Conclusion

