Variants of Weighted Automata

A presentation by
Vrunda Dave

Guided by
Prof. S. Akshay and Prof. Nutan Limaye

December 2, 2015
Motivation

- classical automata with weight on transitions.
- weights may model
 - cost involved
 - amount of resources
 - probability or reliability of execution
- unifying framework using semiring
Motivation

- classical automata with weight on transitions.
- weights may model:
 - cost involved
 - amount of resources
 - probability or reliability of execution
- unifying framework using semiring
Preliminaries

- **Semiring**: structure \((K, +, \cdot, 0, 1)\)
 - \((K, +, 0)\) is a commutative monoid
 - \((K, \cdot)\) is a monoid
 - \(\cdot\) distributes over \(+\)
 - 0 is annihilator wrt \(\cdot\)
 - e.g., \(\mathbb{B} = (\{0, 1\}, \lor, \land, 0, 1)\)

- **Formal Power Series**:
 - mapping \(S : A^* \rightarrow K\)
 - characteristic series \(1_L : A^* \rightarrow K\)
 - \((1_L, w) = 1\) if \(w \in L\)
 - \((1_L, w) = 0\) otherwise
Weighted Automata

- fix a semiring K and an alphabet A.
- weighted finite automaton over A and K is a quadruple $A = (Q, \lambda, \mu, \gamma)$
- Q - finite set of states
- $\mu : A \rightarrow K^{Q \times Q}$ - transition weight function
- $\lambda, \gamma : Q \rightarrow K$ - weight functions for entering and leaving a state
Example

e.g., Compute $f(a, b) = \text{maximum } n_b - n_a$ in any prefix

![Weighted automaton](image)

Figure 1: Weighted automaton A to compute $f(a, b)$

$$\lambda(1) = 0 \quad \gamma(1) = -\infty$$
$$\lambda(2) = -\infty \quad \gamma(2) = 0$$

Over the semiring $(\mathbb{Z} \cup \{-\infty\}, \text{max}, +, -\infty, 0)$
Closure Properties

- The formal power series $\|A\|: A^* \rightarrow K$ is called the behavior of A.
- Recognizable if there exists a weighted automaton A such that $S = \|A\|$.

Lemma 1
[Droste and Gastin, 2007]

1. Let $S, T \in K\langle A^* \rangle$ be recognizable, then $S + T$ is recognizable. If K is commutative, then $S \odot T$ is also recognizable.

2. For any recognizable language $L \subseteq A^*$, the series 1_L is recognizable.
The syntax of weighted logic formula is given by

$$\varphi := k \mid P_a(x) \mid \neg P_a(x) \mid x \leq y \mid \neg (x \leq y) \mid x \in X \mid \neg (x \in X) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \exists X. \varphi \mid \forall x. \varphi \mid \forall X. \varphi$$

where $k \in K$ and $a \in \Sigma$. $MSO(K, A)$ contains all such weighted logic formulas.
Weighted Logic Semantics

Let $\phi \in MSO(K, A)$ and \mathcal{V} be a finite set of variables containing $\text{Free}(\phi)$. The \mathcal{V} semantics of ϕ is a formal power series $[[\phi]]_{\mathcal{V}} \in A_{\mathcal{V}}^*$. If σ is not a valid (\mathcal{V}, w)-assignment, then $[[\phi]]_{\mathcal{V}}(w, \sigma) = 0$. Otherwise define $[[\phi]]_{\mathcal{V}}(w, \sigma) \in K$ inductively as follows:

- $[[k]]_{\mathcal{V}}(w, \sigma) = k$
- $[[P_a(x)]]_{\mathcal{V}}(w, \sigma) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$
- $[[x \leq y]]_{\mathcal{V}}(w, \sigma) = \begin{cases} 1 & \text{if } \sigma(x) \leq \sigma(y) \\ 0 & \text{otherwise} \end{cases}$
Weighted Logic Semantics

\[\nu(\sigma) = \begin{cases}
1 & \text{if } \sigma(x) \in \sigma(X) \\
0 & \text{otherwise}
\end{cases} \]

\[\lnot \varphi(w, \sigma) = \begin{cases}
1 & \text{if } \nu(\varphi(w, \sigma)) = 0 \text{ if } \varphi \text{ is of the form } P_a(x), \\
0 & \text{if } \nu(\varphi(w, \sigma)) = 1(x \leq y) \text{ or } (x \in X).
\end{cases} \]

\[\nu(\varphi \lor \psi)(w, \sigma) = \nu(\varphi(w, \sigma)) + \nu(\psi(w, \sigma)) \]

\[\nu(\varphi \land \psi)(w, \sigma) = \nu(\varphi(w, \sigma)) \cdot \nu(\psi(w, \sigma)) \]
Weighted Logic Semantics

▶ $\exists x. \varphi \triangleright v(w, \sigma) = \sum_{1 \leq i \leq |w|} [\varphi]_{\nu \cup \{x\}}(w, \sigma[x \rightarrow i])$

▶ $\exists X. \varphi \triangleright v(w, \sigma) = \sum_{I \subseteq \{1, \ldots, |w|\}} [\varphi]_{\nu \cup \{X\}}(w, \sigma[X \rightarrow I])$

▶ $\forall x. \varphi \triangleright v(w, \sigma) = \prod_{1 \leq i \leq |w|} [\varphi]_{\nu \cup \{x\}}(w, \sigma[x \rightarrow i])$

▶ $\forall X. \varphi \triangleright v(w, \sigma) = \prod_{I \subseteq \{1, \ldots, |w|\}} [\varphi]_{\nu \cup \{X\}}(w, \sigma[X \rightarrow I])$
unrestricted universal quantification is too strong to preserve recognizability.

Definition 2
[Droste and Gastin, 2007] A formula \(\phi \in MSO(K, A) \) is called restricted, if it contains no universal set quantification of the form
\(\forall X. \psi \) and whenever \(\phi \) contains a universal first-order quantification \(\forall X. \psi \), then \(\llbracket \psi \rrbracket \) is a recognizable step function.

Theorem 3
[Droste and Gastin, 2007] Let \(K \) be a commutative semiring and \(A \) an alphabet. Then,
\[
K^{rec} \langle \langle A^* \rangle \rangle = K^{rmso} \langle \langle A^* \rangle \rangle = K^{remso} \langle \langle A^* \rangle \rangle.
\]
Weighted Automata - A general Model

- Finite Automata over $\text{Bool} = (\{0, 1\}, \lor, \land, 0, 1)$ semiring.
- Word Transducer over $(\Gamma, \cup, \cdot, \phi, \{\epsilon\})$ semiring
- Probabilistic Automata over $\text{Prob} = (\mathbb{R}_{\geq 0} \cap [0, 1], +, \cdot, 0, 1)$ semiring.
Probabilistic Automata and Stochastic Matrix

Definition 4

[Rabin, 1963] A \textit{probabilistic automaton} is a weighted automaton $A = (Q, A, \lambda, \mu, \gamma)$ over $\text{Prob} = (\mathbb{R}_{\geq 0}, +, \cdot, 0, 1)$ such that

1. there is a single state $p \in Q$ such that $\lambda(p) = 1$ and, for all $q \in Q \setminus \{p\}$, $\lambda(q) = 0$,
2. for all $p \in Q$, $\gamma(p) \in \{0, 1\}$, and
3. for all $p \in Q$ and $a \in A$, we have $\sum_{q \in Q} \mu(p, a, q) = 1$.

$||A|| = \lambda \cdot \mu \cdot \gamma$.

- A matrix of $\mathbb{R}_{\geq 0}^{Q \times Q}$ is \textit{stochastic} if each of its rows sums to 1.

Proposition 5

The product of two stochastic matrices is again a stochastic matrix.
Stochastic Languages

Definition 6
A language $L \subseteq A^*$ is stochastic if there is a probabilistic automaton $A = (Q, A, \lambda, \mu, \gamma)$ and $\theta \in [0, 1]$ such that $L = L_{>\theta}(A)$.

Fundamental Results:

1. Every regular language is stochastic.
2. There is a stochastic language that is not recursively enumerable.
3. For isolated cut point, the associated threshold language is regular.

Definition 7 (isolated cut point)
Let $A = (Q, A, \lambda, \mu, \gamma)$ be a probabilistic automaton and let $\theta \in [0, 1]$. We can say θ is an *isolated cut point* of A if there is $\delta > 0$ such that, for all $w \in A^*$, we have $|||A||(w) - \theta| \geq \delta$.
Threshold Emptiness

<table>
<thead>
<tr>
<th>threshold operations</th>
<th>0</th>
<th>1</th>
<th>$\theta \in (0, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$=$</td>
<td>Decidable</td>
<td>Decidable</td>
<td>Undecidable</td>
</tr>
<tr>
<td>\leq</td>
<td>Decidable</td>
<td>Decidable</td>
<td>Undecidable</td>
</tr>
<tr>
<td>\geq</td>
<td>Decidable</td>
<td>Decidable</td>
<td>Undecidable</td>
</tr>
<tr>
<td>$<$</td>
<td>Decidable</td>
<td>Decidable</td>
<td>Undecidable</td>
</tr>
<tr>
<td>$>$</td>
<td>Decidable</td>
<td>Decidable</td>
<td>Undecidable</td>
</tr>
</tbody>
</table>

Figure 2: Table about decidability of emptiness problem for probabilistic automata with different thresholds
It is natural, for a unary probabilistic automaton, and a relation $\sim \in \{>, \geq, =\}$, to consider the following problem:

Input

Unary Probabilistic automaton A and $\theta

Threshold Emptiness

Do we have $L_{\sim \theta}(A) \neq \phi$?

Threshold Universality

Do we have $L_{\sim \theta}(A) = A^*$?
Decision Problems:

Let \(C \) be a class of weighted automata over \(S \). The emptiness problem for \(C \) is given as follows:

Input

Unary Probabilistic automaton \(A \) and \(\theta \in (0, 1) \).

Threshold Emptiness

Do we have \(L_{\sim \theta}(A) \neq \phi \)?

Threshold Universality

Do we have \(L_{\sim \theta}(A) = A^* \)?

For a semiring \(S = (S, +, \cdot, 0, 1) \), a relation \(\nleq \subseteq S \times S \), and a class \(C \) of weighted automata over \(S \), consider the following problem:

Input:

Weighted automaton \(A \in C \) and \(\theta \in S \).

Threshold Regularity wrt \(\nleq \)

Is \(L_{\nleq \theta}(A) \) regular?
Decision Problems

We may also want to decide whether a threshold language empty or universal.

Input:
Weighted automaton $A \in \mathcal{C}$ and $\theta \in S$

Threshold Emptiness wrt 1
Do we have $L_{\times \theta}(A) \neq \phi$?

Threshold Universality wrt 1
Do we have $L_{\times \theta}(A) = A^*$?

Another question is to compare universally or existentially the semantics of two given automata.

Input:
Weighted Automata $A, B \in \mathcal{C}$.

(IN)Equality wrt \times
Do we have $\|A\|(w) \times \|B\|(w)$ for all $w \in A^*$?

Existential (IN)Equality wrt \times
Is there $w \in A^*$ such that $\|A\|(w) \times \|B\|(w)$?

Thank You. :}

Additional note to the recipient